Araştırma Makalesi
BibTex RIS Kaynak Göster

Current Possibilities and Constraints of Interactive Space Solutions with the Use of Microcontroller Systems in Interior Design

Yıl 2022, Cilt: 5 Sayı: 2, 203 - 224, 31.12.2022

Öz

Maker movement that presents a life vision of people whom producing their needs started to appear in the design of users’ environments with the Industry 4.0. Especially it is possible to plan interior elements and systems for the smart home concepts with microcontrollers that have user friendly interfaces like Arduino. That situation also affects design process, morphology and function of microcontroller-based interactive interiors. Understanding the limits of the microcontrollers for designing the interactive spaces in the future is essential, therefore purpose of this research is examining the ways to benefit microcontrollers during interactive interior design process in housing for interior designers. Study analyses the morphology and the functions of the interactive interiors and spatial elements designed by the makers and proposes useful design methods for the designers. As a qualitative research, relational screening method has been used in the study. As a result of the study, it is aimed to present methods that interior designers can follow in the design process of microcontroller-based spaces such as kinetic space elements and interactive surfaces. At the end of the study, findings on the possibilities, limitations and possible recommendations of these technologies were presented.

Kaynakça

  • Alzafarani, R. A., & Alyahya, G. A. (2018). Energy efficient IoT home monitoring and automation system. 2018 15th Learning and Technology Conference (L&T). 107-111. DOI: 10.1109/LT.2018.8368493.
  • Anderson, C. (2012). Makers: The new ındustrial revolution. Crown Business.
  • Amit, S., Koshy, A. S., Samprita, S., Joshi, S., & Ranjitha, N. (2019). Internet of Things (IoT) enabled sustainable home automation along with security using solar energy. 2019 International Conference on Communication and Electronics Systems (ICCES), 1026-1029. ISBN: 978-1728112619.
  • Arabacıoğlu, B.C., (2005). Akıllı bina sistemleri ile etkileşimli kişiselleşebilir iç mekân kavramı ve geleceğin akıllı iç mekân tasarımı süreci için bir model önerisi (Yayın No. 167774). [Doktora tezi, MSGSÜ].
  • Arabacıoğlu, B. C. (2008). Etkileşimli Mekân Tasarımı. KMİM Dergisi, (3), 43-51.
  • Arabacıoğlu, B. C. (2014). Bilgi-iletişim teknolojileri destekli etkileşimli mekân tasarım süreci (Yayın No. 374652). [Doktora tezi, MSGSÜ].
  • Arabacıoğlu, B.C. ve Aytıs, S. (2016). Bilgi-İletişim teknolojileri destekli etkileşimli mekân tasarımı süreci. Megaron, 11(2), 282-290. https://doi.org/ 10.5505/megaron.2016.82712.
  • Dutt, F., Das, S., & Swartz, M. (2016). Interactive glare visualization model for an architectural space. Between Computational Models and Performative Capacities, 19(97), 1-11.
  • Fox, M. A., Yeh, B. P. (2000). Intelligent kinetic systems in architecture. Managing interactions in smart environments (pp. 91-103). Springer.
  • Gaver, W., Bowers, J., Boucher, A., Law, A., Pennington, S., & Villar, N. (2006). The history tablecloth: Illuminating domestic activity. In Proceedings of the 6th conference on Designing Interactive systems, 199-208. http://dx.doi.org/10.1145/1142405.1142437.
  • Gertz, E., & Di Justo, P. (2012). Environmental monitoring with Arduino: building simple devices to collect data about the world around us. O'Reilly Media. ISBN: 978-1-449-31056-1.
  • Giacobbe, M., Pellegrino, G., Scarpa, M., & Puliafito, A. (2017). The ESSB system: a novel solution to improve comfort and sustainability in smart office environments. 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), 311-316. DOI: 10.1109/ICNSC.2017.8000110.
  • Grönvall, E., Kinch, S., Petersen, M. G., & Rasmussen, M. K. (2014). Causing commotion with a shape-changing bench: experiencing shape-changing interfaces in use. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2559-2568. https://dx.doi.org/10.1145/2556288.2557360.
  • Gunge, V. S., & Yalagi, P. S. (2016). Smart home automation: a literature review. International Journal of Computer Applications, 975, 6-10.
  • Hira, A., & Hynes, M. (2021). How do designers and engineers practice design while Making? A narrative inquiry of designers who Make. Information and Learning Sciences, 12(11), 749-773. https://doi.org/10.1108/ILS-08-2020-0195.
  • Irak, N. ve Yılmaz, E. (2019). Akıllı Binalarda Konfor Faktörü ve Optimizasyonu. International Congress on HumanComputer Interaction, Optimization and Robotic Applications, DOI: 10.36287/setsci.4.5.027.
  • Kim, H., Huang, J., & Lee, J. K. (2016). A case study: Projecting images for designing interior panels using parametric modeling tool. ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, 33(1), IAARC Publications.
  • Majhi, A. K., Dash, S., & Barik, C. K. (2021). Arduino based smart home automation system. Accent. Trans. Inf. Secur, 6, 7-12. http://dx.doi.org/10.19101/TIS.2021.621001.
  • Mukendi, H. K., Adonis, M. (2018). Smart homes and sustainable cities: The design of a low-cost solution for comprehensive home automation. Sustainable cities-authenticity, ambition and dream. IntechOpen. DOI: 10.5772/intechopen.78058.
  • Nabil, S., Plötz, T., & Kirk, D. S. (2017). Interactive architecture: Exploring and unwrapping the potentials of organic user interfaces. Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, 89-100. http://dx.doi.org/10.1145/3024969.3024981.
  • Nabil, S., Everitt, A., Sturdee, M., Alexander, J., Bowen, S., Wright, P., & Kirk, D. (2018). ActuEating: Designing, studying and exploring actuating decorative artefacts. Proceedings of the 2018 Designing Interactive Systems Conference, 327-339. https://doi.org/10.1145/3196709.3196761.
  • Nabil, S., & Kirk, D. (2021). Decoraction: a Catalogue for Interactive Home Decor of the Nearest-Future. Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction. 1-13. https://doi.org/10.1145/3430524.3446074.
  • Odom, W., Banks, R., Durrant, A., Kirk, D., & Pierce, J. (2012). Slow technology: critical reflection and future directions. Proceedings of the Designing Interactive Systems Conference, 816-817. http://dx.doi.org/10.1145/2317956.2318088
  • Öztürk, M., Gökoğlu, S. ve Çakıroğlu, Ü. (2017). Öğrenme Sürecinde Yeni Bir Yaklaşım: Üreten Hareketi (Maker Movement). Eğitim Teknolojileri Okumaları 2017, TOJET.
  • Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., & Hornbæk, K. (2012). Shape-changing interfaces: a review of the design space and open research questions. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 735-744. https://doi.org/10.1145/2207676.2207781
  • Ren, H., Anicic, D., & Runkler, T. A. (2021). Tinyol: Tinyml with online-learning on microcontrollers. 2021 International Joint Conference on Neural Networks (IJCNN). 1-8.
  • Rowan, P. (2020). Agility in Interior Architecture: An investigation through Prototypical Design for Interactive Spatial Dynamics. [Doctoral dissertation, Wellington Architecture School]. http://hdl.handle.net/10063/9314.
  • Saint-Clair, R. (2014). In the Interior of Innovation: The FabLab Synthesis of Physical and Virtual Environments. A Matter of Design: Making Society through Science and Technology, Proceedings of the 5th STS Italia Conference, STS Italia Publishing, 1145-1161.
  • Seo, J. H., Sungkajun, A., Sanchez, T., & Suh, J. (2015). Touchology: Peripheral Interactive Plant Design for Well-being. IxD&A, 27, 175-187.
  • Taşdemir, C. (2012). Arduino: Analog, dijital, sensörler, haberleşme, projeler. Dikeyeksen Yayınları.
  • Yan, H. H., & Rahayu, Y. (2014). Design and development of gas leakage monitoring system using arduino and zigbee. Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014).
  • Yekutiel, T.P., & Grobman, Y.J., (2014). Controlling kinetic cladding components in building facades: A case for autonomous movement. Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014). DOI: 10.52842/conf.caadria.2014.129.
  • Yusuf, A., & Baba, M. A. (2014). Design and Implementation of a Home Automated System based on Arduino, Zigbee and Android. International Journal of Computer Applications, 97(9).
  • Ziqian, B., (2015). Innovative photonic textiles: the design, investigation and development of polymeric photonic fiber integrated textiles for interior furnishings. [Doctoral dissertation, Hong Kong Polytechnic University].
  • Arduino Expert (2016). Automated Greenhouse, Duino4Projects. https://bit.ly/3rhFTjN
  • Arduino Team (2016, 26 Mayıs). Cloud lamp/speaker combo brings thunder into your living room, Blog.Arduino.CC. https://bit.ly/3Rptipm
  • Arduino Team (2016, 26 Ağustos). Interactive instrument turns brainwaves into art, Blog.Arduino.cc. https://bit.ly/3Rj5ljG
  • Brito, M. (2012, 8 Ağustos). A Living System, Behance. https://bit.ly/3ClqPrK
  • Bruges, J. (2012). Nature Trail, Jack Bruges Studio. https://bit.ly/3RnzKgH
  • CartonLab (2016, 12 Temmuz). Extensible LAMP Project, Facebook. https://bit.ly/3rjLFBF
  • CERN-OHL2 (2019). G.L.A.M.O.U.R.o.U.S., Project Hub. https://bit.ly/3rkCSPU
  • Collabcubed (2012, 1 Ekim). Anarchy Dance Theater & Ultracombos, Collabcubed. https://bit.ly/ultracombos
  • Damian, O. (2017, 10 Şubat). Use Arduino, Sensors, Servos, and LEDs To Create Life-Like Behavior, Makezine. https://bit.ly/3ClG5oJ
  • DrawLight (2014). 3D Room Video Mapping Projection - London Design Week (100%Design), Youtube. https://bit.ly/3dXfvZB
  • Gordon, R. (2020, 8 Nisan). Sprayable user interfaces, MIT CSail. https://bit.ly/3CnpXmo
  • Ito, H. (2013, 10 Eylül). The Responsive Tea Room, Behance. https://bit.ly/3SpWH4l
  • Jobson, C. (2014, 16 Şubat). Interactive Mirrors Built from Arrays of Moving Objects by Daniel Rozin, Colossal. https://bit.ly/3SiAVzj
  • KTH Royal Institute of Technology (2014, 14 Ağustos). Mediated Spaces, KTH Group. https://bit.ly/3StYWng
  • Mashable (2017). Nike's LED running track, Youtube. https://bit.ly/3rfyP7z
  • NXP (2013). Smart Home, NXP. https://bit.ly/3y1gkHO
  • ProjectOne (2009). MorphoLuminescence, Vimeo. https://bit.ly/3rhHA0C
  • Spintouch (2022). The Mozayo Multi-touch Table, Spintouch. https://www.spintouch.com/interactive-solutions/hardware/mozayo/
  • Visual Group (2010). Furniture Videomapping, Vimeo. https://vimeo.com/15432621
  • Voices of U (2016). LINES - an Interactive Sound Art Exhibition, Youtube. https://bit.ly/VoicesofU

Mikrodenetleyici Sistemlerin Kullanımı ile Etkileşimli Mekân Çözümlerinin İç Mekân Tasarımında Sunduğu Güncel Olanak ve Kısıtlar

Yıl 2022, Cilt: 5 Sayı: 2, 203 - 224, 31.12.2022

Öz

Her bireyin kendi ihtiyaçlarını üretebileceği bir yaşam vizyonu sunan Üreten hareketi, Endüstri 4.0 dönemiyle kullanıcıların yaşam alanlarının tasarımında yer bulmaya başlamıştır. Özellikle Arduino gibi kullanıcı dostu ara yüzlere sahip mikrodenetleyicilerle akıllı ev konsepti içerisinde etkileşimli mekân öğeleri planlamak mümkündür. Bu durum, mikrodenetleyici tabanlı etkileşimli mekânların tasarım sürecinde biçim dili ve işleve etki eder. Gelecekte etkileşimli mekânların tasarımlarında mikrodenetleyici sistemlerinin sınırlarının anlaşılması önem arz ettiği için, bu çalışmada iç mimarlar ve tasarımcıların etkileşimli mekân tasarımı sürecinde mikrodenetleyicilerden ne şekilde faydalanılabilecekleri incelenmiştir. Çalışma, “üreten” olarak tanımlanan kullanıcılar tarafından tasarlanmış etkileşimli mekân ve öğelerinin biçim ve işlevlerini analiz ederek tasarımcılar için yararlı tasarım yöntemlerinin önerilmesini amaçlamaktadır. Nitel bir araştırma olan bu çalışmada, ilişkisel tarama yönteminden yararlanılmıştır. Çalışma sonucunda iç mimarların mikrodenetleyici temelli mekânların tasarım sürecinde izleyebilecekleri yollara dair kinetik mekân öğeleri ve etkileşimli yüzeyler gibi yöntemler sunulması hedeflenmiştir. Çalışmanın sonunda bu teknolojilerin olanakları, kısıtları ve olası önerilerle ilgili bulgular ortaya konmuştur

Kaynakça

  • Alzafarani, R. A., & Alyahya, G. A. (2018). Energy efficient IoT home monitoring and automation system. 2018 15th Learning and Technology Conference (L&T). 107-111. DOI: 10.1109/LT.2018.8368493.
  • Anderson, C. (2012). Makers: The new ındustrial revolution. Crown Business.
  • Amit, S., Koshy, A. S., Samprita, S., Joshi, S., & Ranjitha, N. (2019). Internet of Things (IoT) enabled sustainable home automation along with security using solar energy. 2019 International Conference on Communication and Electronics Systems (ICCES), 1026-1029. ISBN: 978-1728112619.
  • Arabacıoğlu, B.C., (2005). Akıllı bina sistemleri ile etkileşimli kişiselleşebilir iç mekân kavramı ve geleceğin akıllı iç mekân tasarımı süreci için bir model önerisi (Yayın No. 167774). [Doktora tezi, MSGSÜ].
  • Arabacıoğlu, B. C. (2008). Etkileşimli Mekân Tasarımı. KMİM Dergisi, (3), 43-51.
  • Arabacıoğlu, B. C. (2014). Bilgi-iletişim teknolojileri destekli etkileşimli mekân tasarım süreci (Yayın No. 374652). [Doktora tezi, MSGSÜ].
  • Arabacıoğlu, B.C. ve Aytıs, S. (2016). Bilgi-İletişim teknolojileri destekli etkileşimli mekân tasarımı süreci. Megaron, 11(2), 282-290. https://doi.org/ 10.5505/megaron.2016.82712.
  • Dutt, F., Das, S., & Swartz, M. (2016). Interactive glare visualization model for an architectural space. Between Computational Models and Performative Capacities, 19(97), 1-11.
  • Fox, M. A., Yeh, B. P. (2000). Intelligent kinetic systems in architecture. Managing interactions in smart environments (pp. 91-103). Springer.
  • Gaver, W., Bowers, J., Boucher, A., Law, A., Pennington, S., & Villar, N. (2006). The history tablecloth: Illuminating domestic activity. In Proceedings of the 6th conference on Designing Interactive systems, 199-208. http://dx.doi.org/10.1145/1142405.1142437.
  • Gertz, E., & Di Justo, P. (2012). Environmental monitoring with Arduino: building simple devices to collect data about the world around us. O'Reilly Media. ISBN: 978-1-449-31056-1.
  • Giacobbe, M., Pellegrino, G., Scarpa, M., & Puliafito, A. (2017). The ESSB system: a novel solution to improve comfort and sustainability in smart office environments. 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), 311-316. DOI: 10.1109/ICNSC.2017.8000110.
  • Grönvall, E., Kinch, S., Petersen, M. G., & Rasmussen, M. K. (2014). Causing commotion with a shape-changing bench: experiencing shape-changing interfaces in use. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2559-2568. https://dx.doi.org/10.1145/2556288.2557360.
  • Gunge, V. S., & Yalagi, P. S. (2016). Smart home automation: a literature review. International Journal of Computer Applications, 975, 6-10.
  • Hira, A., & Hynes, M. (2021). How do designers and engineers practice design while Making? A narrative inquiry of designers who Make. Information and Learning Sciences, 12(11), 749-773. https://doi.org/10.1108/ILS-08-2020-0195.
  • Irak, N. ve Yılmaz, E. (2019). Akıllı Binalarda Konfor Faktörü ve Optimizasyonu. International Congress on HumanComputer Interaction, Optimization and Robotic Applications, DOI: 10.36287/setsci.4.5.027.
  • Kim, H., Huang, J., & Lee, J. K. (2016). A case study: Projecting images for designing interior panels using parametric modeling tool. ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, 33(1), IAARC Publications.
  • Majhi, A. K., Dash, S., & Barik, C. K. (2021). Arduino based smart home automation system. Accent. Trans. Inf. Secur, 6, 7-12. http://dx.doi.org/10.19101/TIS.2021.621001.
  • Mukendi, H. K., Adonis, M. (2018). Smart homes and sustainable cities: The design of a low-cost solution for comprehensive home automation. Sustainable cities-authenticity, ambition and dream. IntechOpen. DOI: 10.5772/intechopen.78058.
  • Nabil, S., Plötz, T., & Kirk, D. S. (2017). Interactive architecture: Exploring and unwrapping the potentials of organic user interfaces. Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, 89-100. http://dx.doi.org/10.1145/3024969.3024981.
  • Nabil, S., Everitt, A., Sturdee, M., Alexander, J., Bowen, S., Wright, P., & Kirk, D. (2018). ActuEating: Designing, studying and exploring actuating decorative artefacts. Proceedings of the 2018 Designing Interactive Systems Conference, 327-339. https://doi.org/10.1145/3196709.3196761.
  • Nabil, S., & Kirk, D. (2021). Decoraction: a Catalogue for Interactive Home Decor of the Nearest-Future. Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction. 1-13. https://doi.org/10.1145/3430524.3446074.
  • Odom, W., Banks, R., Durrant, A., Kirk, D., & Pierce, J. (2012). Slow technology: critical reflection and future directions. Proceedings of the Designing Interactive Systems Conference, 816-817. http://dx.doi.org/10.1145/2317956.2318088
  • Öztürk, M., Gökoğlu, S. ve Çakıroğlu, Ü. (2017). Öğrenme Sürecinde Yeni Bir Yaklaşım: Üreten Hareketi (Maker Movement). Eğitim Teknolojileri Okumaları 2017, TOJET.
  • Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., & Hornbæk, K. (2012). Shape-changing interfaces: a review of the design space and open research questions. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 735-744. https://doi.org/10.1145/2207676.2207781
  • Ren, H., Anicic, D., & Runkler, T. A. (2021). Tinyol: Tinyml with online-learning on microcontrollers. 2021 International Joint Conference on Neural Networks (IJCNN). 1-8.
  • Rowan, P. (2020). Agility in Interior Architecture: An investigation through Prototypical Design for Interactive Spatial Dynamics. [Doctoral dissertation, Wellington Architecture School]. http://hdl.handle.net/10063/9314.
  • Saint-Clair, R. (2014). In the Interior of Innovation: The FabLab Synthesis of Physical and Virtual Environments. A Matter of Design: Making Society through Science and Technology, Proceedings of the 5th STS Italia Conference, STS Italia Publishing, 1145-1161.
  • Seo, J. H., Sungkajun, A., Sanchez, T., & Suh, J. (2015). Touchology: Peripheral Interactive Plant Design for Well-being. IxD&A, 27, 175-187.
  • Taşdemir, C. (2012). Arduino: Analog, dijital, sensörler, haberleşme, projeler. Dikeyeksen Yayınları.
  • Yan, H. H., & Rahayu, Y. (2014). Design and development of gas leakage monitoring system using arduino and zigbee. Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014).
  • Yekutiel, T.P., & Grobman, Y.J., (2014). Controlling kinetic cladding components in building facades: A case for autonomous movement. Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014). DOI: 10.52842/conf.caadria.2014.129.
  • Yusuf, A., & Baba, M. A. (2014). Design and Implementation of a Home Automated System based on Arduino, Zigbee and Android. International Journal of Computer Applications, 97(9).
  • Ziqian, B., (2015). Innovative photonic textiles: the design, investigation and development of polymeric photonic fiber integrated textiles for interior furnishings. [Doctoral dissertation, Hong Kong Polytechnic University].
  • Arduino Expert (2016). Automated Greenhouse, Duino4Projects. https://bit.ly/3rhFTjN
  • Arduino Team (2016, 26 Mayıs). Cloud lamp/speaker combo brings thunder into your living room, Blog.Arduino.CC. https://bit.ly/3Rptipm
  • Arduino Team (2016, 26 Ağustos). Interactive instrument turns brainwaves into art, Blog.Arduino.cc. https://bit.ly/3Rj5ljG
  • Brito, M. (2012, 8 Ağustos). A Living System, Behance. https://bit.ly/3ClqPrK
  • Bruges, J. (2012). Nature Trail, Jack Bruges Studio. https://bit.ly/3RnzKgH
  • CartonLab (2016, 12 Temmuz). Extensible LAMP Project, Facebook. https://bit.ly/3rjLFBF
  • CERN-OHL2 (2019). G.L.A.M.O.U.R.o.U.S., Project Hub. https://bit.ly/3rkCSPU
  • Collabcubed (2012, 1 Ekim). Anarchy Dance Theater & Ultracombos, Collabcubed. https://bit.ly/ultracombos
  • Damian, O. (2017, 10 Şubat). Use Arduino, Sensors, Servos, and LEDs To Create Life-Like Behavior, Makezine. https://bit.ly/3ClG5oJ
  • DrawLight (2014). 3D Room Video Mapping Projection - London Design Week (100%Design), Youtube. https://bit.ly/3dXfvZB
  • Gordon, R. (2020, 8 Nisan). Sprayable user interfaces, MIT CSail. https://bit.ly/3CnpXmo
  • Ito, H. (2013, 10 Eylül). The Responsive Tea Room, Behance. https://bit.ly/3SpWH4l
  • Jobson, C. (2014, 16 Şubat). Interactive Mirrors Built from Arrays of Moving Objects by Daniel Rozin, Colossal. https://bit.ly/3SiAVzj
  • KTH Royal Institute of Technology (2014, 14 Ağustos). Mediated Spaces, KTH Group. https://bit.ly/3StYWng
  • Mashable (2017). Nike's LED running track, Youtube. https://bit.ly/3rfyP7z
  • NXP (2013). Smart Home, NXP. https://bit.ly/3y1gkHO
  • ProjectOne (2009). MorphoLuminescence, Vimeo. https://bit.ly/3rhHA0C
  • Spintouch (2022). The Mozayo Multi-touch Table, Spintouch. https://www.spintouch.com/interactive-solutions/hardware/mozayo/
  • Visual Group (2010). Furniture Videomapping, Vimeo. https://vimeo.com/15432621
  • Voices of U (2016). LINES - an Interactive Sound Art Exhibition, Youtube. https://bit.ly/VoicesofU
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık
Bölüm Araştırma Makalesi
Yazarlar

Sencer Özdemir 0000-0003-2364-0783

Burçin Cem Arabacıoğlu 0000-0002-1204-4479

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 5 Ekim 2022
Yayımlandığı Sayı Yıl 2022Cilt: 5 Sayı: 2

Kaynak Göster

APA Özdemir, S., & Arabacıoğlu, B. C. (2022). Mikrodenetleyici Sistemlerin Kullanımı ile Etkileşimli Mekân Çözümlerinin İç Mekân Tasarımında Sunduğu Güncel Olanak ve Kısıtlar. Modular Journal, 5(2), 203-224.