Review
BibTex RIS Cite

İç Mekânda Geçicilik Kavramının Karbon Ayak İzine Etkilerini Biyomalzeme Kullanımı ile Azaltma

Year 2023, , 66 - 87, 23.06.2023
https://doi.org/10.59389/modular.1136468

Abstract

Geçici kullanım amacıyla tasarlanan iç mekânların her uygulamada mekân kurgusunun yeniden tanımlanması ve gizli karbon ayak izini artırması, bu mekânlarda doğa dostu, doğa ile uyumlu biyomalzemelerin kullanılmasını gerektirmektedir. Doğal ve biyomimetrik sürdürülebilir yapı malzemelerinin, sürekli değişen iç mekân kurguları üzerinde kullanımı ile yapı ve ürünlerdeki gizli karbon ayak izini azaltması ve sürdürülebilirliğe katkı sağlaması beklenmektedir. Bu çalışma, biyomimikri ve malzeme ilişkisini analiz ederek iç mekân tasarımlarında kullanılabilecek biyomalzemelerin araştırılmasını ve bu malzemelerin sürekli değişen, yeni kullanım ve işlev gerektiren iç mekânlarda 'geçicilik' bağlamında kullanılabilirliğini sorgulamaktadır. Çalışmanın amacı, biyomimikrinin malzeme üzerinden iç mekânlarda kullanımı ile karbon ayak izine etkileri konusunda bilgi sağlamak ve iç mekânların yaratım sürecine etkilerini açıklamaktır. Bu çalışma, iç mekân tasarım süreçlerine yeni bir bakış açısı kazandırarak mevcut örnekler üzerinden biyomalzemelerin doğaya ve mekân tasarımlarına katkılarını değerlendirmeyi ve çevreye sağlanabilecek yarar potansiyelinde farkındalık oluşturmayı hedeflemektedir.

Thanks

Bu makale, Mimar Sinan Güzel Sanatlar Üniversitesi Fen Bilimleri Enstitüsü İç Mimarlık Ana Bilim Dalı’nda 2022 yılında tamamlanan yüksek lisans dersi kapsamında Dr. Öğr. Üyesi Mahmut Atilla Söğüt ve Doç. Dr. İldem Ayter Sever desteği ile yazılmıştır. Makalede, ulusal ve uluslararası araştırma ve yayın etiğine uyulmuştur. Çalışmada Etik Kurul izni gerekmemiştir.

References

  • Allwood, J. M., Cullen, J. M., & Milford, R. L. (2014). The carbon footprint of steel. Journal of Industrial Ecology, 18(5), 660-670.
  • Almpani-Lekka, D., Pfeiffer, S., Schmidts, C., & Seo, S. I. (2021). A review on architecture with fungal biomaterials: The desired and the feasible. Fungal Biology and Biotechnology, 8(1), 1-9.
  • Apaydın, B. (2019). Palimpsest kavramı ve mekânsal dönüşüm. Turkish Online Journal of Design Art and Communication, 9(2), 90-103.
  • Arun, T. (2012). Geçici mimari yapılarda grafik ögelerin kullanımı (Yayın No. 342431). [Yüksek Lisans tezi, Haliç Üniversitesi]. Ulusal Tez Merkezi Veri Tabanı.
  • Ataç, A. (2019). Mimarlıkta biyomalzemelerin kullanımı: Sıkıştırılmış toprak blokların performansının mikorizal mantar kullanılarak geliştirilmesi (Yayın No. 582396). [Yüksek Lisans tezi, İstanbul Bilgi Üniversitesi]. Ulusal Tez Merkezi Veri Tabanı.
  • Attia D. (2012). Positive energy in interior design and furniture. International Design Journal, 4(1), 35.
  • Ayiran, N. (2012). The role of metaphors in the formation of architectural identity. Journal of Istanbul Technical University, 9(2), 1-21.
  • Benyus, J. (1997). Biomimicry: Innovation inspired by nature. HarperCollins.
  • Brooker, G., & Stone, S. (2004). Re-readings: Interior architecture and the design principles of remodeling existing buildings. RIBA Publishing.
  • Brooker, G., & Stone, S. (2010). İç mekân tasarımı nedir?. çev: Zeynep Yazıcıoğlu Halu, YEM Yayın.
  • Chappel B. D. (2004). Ephemeral Architecture: Towards A Definition. Studio, 12, 1-59.
  • Cordan, Ö. (2019). Bir Palimpsest Olarak İç Mekan, Yapı, 450, 25-28.
  • Cordan, Ö. (2019, September 25-28). Adaptive reuse in ınterior architecture: A conceptual and theoretical framework. Liveanarch VI, Trabzon, Türkiye.
  • Cullen, J. M., Allwood, J. M., Borgstein, E. H., & Graves, A. (2019). The carbon footprint of paper. Environmental Science & Technology, 53(10), 5699-5707.
  • El-Zeiny, R. M. A. (2012). Biomimicry as a problem solving methodology in interior architecture. Procedia-Social and Behavioral Sciences, (50), 502-512.
  • Gunasekara, D. (2018). Environmental impact of glass production. Journal of Cleaner Production, (171), 119-127.
  • Hammel, K., & Barnette, A. (2018). The carbon footprint of wood. Forest Products Journal, 68(3-4), 110-115.
  • He, B., & Hua, Y. (2017). Feature-based integrated product model for low-carbon conceptual design. Journal of Engineering Design, 28(6), 408-432.
  • Horvath, A. (2011). The carbon footprint of concrete. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 164(3), 119-131.
  • IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. et al. (eds.)]. In Press.
  • Jodidio, P. (2011). Architecture and automobiles. Images Publishing.
  • Lippiatt, B. C., & Cialone, C. (2011). Life-cycle assessment of buildings: A review. In C. A. Brebbia & E. Beriatos (Eds.), Sustainable development and planning V (pp. 85-96). WITT Press. doi: 10.2495/SDP110081
  • Machado, R. (1976). Old buildings as palimpsest: Towards a theory of remodeling. Progressive Architecture, (11), 46-49.
  • Pallasmaa, J. (2007). Spatial recall: Memory in architecture and landscape. In M. Treib (Ed.), Space place memory and imagination the temporal dimension of existential space (pp. 188-201). Routledge.
  • Panahi, S., Mirzaei, Q., & Mohammadikia, M. (2013). Comparative analysis of natural elements in the architecture of Tabriz and Kashan Houses. Middle East Journal of Scientific Research, (13), 507-517.
  • Park, C. W., Kwon, K. S., Kim, W. B., Min, B. K., Park, S. J., Sung, I. H., & Seok, J. (2009). Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151-173.
  • Parker, H. W., & Langer, A. M. (2018). The carbon footprint of plastics. Nature Climate Change, 8(4), 311-313.
  • Perino, M., Magrini, A., & D'Amico, G. (2017). The carbon footprint of flax and hemp textiles. Journal of Cleaner Production, (162), 1051-1060.
  • Reck, B. K., & Graedel, T. E. (2012). The carbon footprint of aluminum: Past, present, and future. Journal of Industrial Ecology, 16(6), 791-804.
  • Sav, S. (2017). Bir yeniden kullanım önerisi olarak Lefkoşa kent müzesi (Yayın No. 479281). [Yüksek Lisans tezi, İstanbul Teknik Üniversitesi]. Ulusal Tez Merkezi Veri Tabanı.
  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.,... Miller, H. (2007). IPCC fourth assessment report (AR4). Climate change, 374.
  • Song, J. S., & Lee, K. M. (2010). Development of a low-carbon product design system based on embedded GHG emissions. Resources, Conservation and Recycling, 54(9), 547-556.
  • Stone, S. (2004). Rereadings: Interior architecture and the design principles of remodeling existing buildings. RIBA Enterprises.
  • Su, J. C., Chu, C. H., & Wang, Y. T. (2012). A decision support system to estimate the carbon emission and cost of product designs. International Journal of Precision Engineering and Manufacturing, 13(7), 1037-1045.
  • Tang, D., Wang, Q., & Ullah, I. (2017). Optimization of product configuration in consideration of customer satisfaction and low carbon. International Journal of Production Research, 55(12), 3349-3373.
  • Tran, K. L. (2011). Architecture as palimpsest : a strategy of intermediacy (Version 1). Toronto Metropolitan University. https://doi.org/10.32920/ryerson.14656560.v1
  • Vahedi, A. (2009). Nature as a source of inspiration for architectural conceptual design. (Publication No. 11129). [Master's thesis, Eastern Mediterranean University]. EMU Institutional Repository.
  • VanderWerf, J. (2018). Hemp as a building material. Journal of Cleaner Production, (184), 411-420.
  • Yıldırım, G. (2009). Mekânların dönüşüm potansiyeli ve mimarlıkta 'palimpsest' kavramı (Yayın No. 251699). [Yüksek Lisans tezi, İstanbul Teknik Üniversitesi]. Ulusal Tez Merkezi Veri Tabanı.
  • Arkiv. (t.y.). Salt Beyoğlu Kış Bahçesi ve Ofisler. https://www.arkiv.com.tr/proje/salt-beyoglu-kisbahcesi-ve-ofisler/10381
  • Birleşmiş Milletler Çevre Programı (UNEP). (2021). https://www.mfa.gov.tr/birlesmis-milletler-cevre-programi.tr.mfa
  • Levy, N. (2020, 23 Nisan). Sustainable food and furniture features in zero-waste London restaurant Silo. https://www.dezeen.com/2020/04/23/silo-restaurant-interiors-sustainable/
  • Morris, A. (2021, 10 Mayıs). Yakusha Design balances rough and smooth surfaces in Kyiv eatery Istetyka. https://www.dezeen.com/2021/05/10/yakusha-design-istetyka-kyiv-restaurant-interior/
  • Nina+Co. (t.y.). Monc. https://ninaand.co/monc
  • Yücel, G. (2020). Sürdürülebilirlik - Nasıl tasarlayacağız? https://www.isikun.edu.tr/web/1695-15756-1-1/isik_universitesi/hakkinda/yonetim

Reducing the Effects of the Concept of Temporality on the Carbon Footprint in Interior with the Use of Biomaterials

Year 2023, , 66 - 87, 23.06.2023
https://doi.org/10.59389/modular.1136468

Abstract

The redefinition of spatial composition in interior spaces, which are designed for temporary use, and the increase in hidden carbon footprint in each application necessitate the use of eco-friendly, nature-compatible biomaterials in these spaces. The utilization of natural and biomimetic sustainable building materials is expected to reduce the hidden carbon footprint of structures and products, contributing to sustainability through their application in constantly changing interior spatial compositions. This study examines the relationship between biomimicry and materials, investigates biomaterials that can be used in interior design, and questions their usability in constantly changing interior spaces that require new uses and functions within the context of 'transience'. The aim of this study is to provide information about the use of biomimicry in materials for interior spaces and its impact on the carbon footprint, as well as to explain its influence on the creation process of interior environments. By offering a new perspective on interior design processes, this study aims to evaluate the contributions of biomaterials to nature and spatial designs through existing examples, raise awareness regarding the potential benefits that can be provided to the environment, and create awareness.

References

  • Allwood, J. M., Cullen, J. M., & Milford, R. L. (2014). The carbon footprint of steel. Journal of Industrial Ecology, 18(5), 660-670.
  • Almpani-Lekka, D., Pfeiffer, S., Schmidts, C., & Seo, S. I. (2021). A review on architecture with fungal biomaterials: The desired and the feasible. Fungal Biology and Biotechnology, 8(1), 1-9.
  • Apaydın, B. (2019). Palimpsest kavramı ve mekânsal dönüşüm. Turkish Online Journal of Design Art and Communication, 9(2), 90-103.
  • Arun, T. (2012). Geçici mimari yapılarda grafik ögelerin kullanımı (Yayın No. 342431). [Yüksek Lisans tezi, Haliç Üniversitesi]. Ulusal Tez Merkezi Veri Tabanı.
  • Ataç, A. (2019). Mimarlıkta biyomalzemelerin kullanımı: Sıkıştırılmış toprak blokların performansının mikorizal mantar kullanılarak geliştirilmesi (Yayın No. 582396). [Yüksek Lisans tezi, İstanbul Bilgi Üniversitesi]. Ulusal Tez Merkezi Veri Tabanı.
  • Attia D. (2012). Positive energy in interior design and furniture. International Design Journal, 4(1), 35.
  • Ayiran, N. (2012). The role of metaphors in the formation of architectural identity. Journal of Istanbul Technical University, 9(2), 1-21.
  • Benyus, J. (1997). Biomimicry: Innovation inspired by nature. HarperCollins.
  • Brooker, G., & Stone, S. (2004). Re-readings: Interior architecture and the design principles of remodeling existing buildings. RIBA Publishing.
  • Brooker, G., & Stone, S. (2010). İç mekân tasarımı nedir?. çev: Zeynep Yazıcıoğlu Halu, YEM Yayın.
  • Chappel B. D. (2004). Ephemeral Architecture: Towards A Definition. Studio, 12, 1-59.
  • Cordan, Ö. (2019). Bir Palimpsest Olarak İç Mekan, Yapı, 450, 25-28.
  • Cordan, Ö. (2019, September 25-28). Adaptive reuse in ınterior architecture: A conceptual and theoretical framework. Liveanarch VI, Trabzon, Türkiye.
  • Cullen, J. M., Allwood, J. M., Borgstein, E. H., & Graves, A. (2019). The carbon footprint of paper. Environmental Science & Technology, 53(10), 5699-5707.
  • El-Zeiny, R. M. A. (2012). Biomimicry as a problem solving methodology in interior architecture. Procedia-Social and Behavioral Sciences, (50), 502-512.
  • Gunasekara, D. (2018). Environmental impact of glass production. Journal of Cleaner Production, (171), 119-127.
  • Hammel, K., & Barnette, A. (2018). The carbon footprint of wood. Forest Products Journal, 68(3-4), 110-115.
  • He, B., & Hua, Y. (2017). Feature-based integrated product model for low-carbon conceptual design. Journal of Engineering Design, 28(6), 408-432.
  • Horvath, A. (2011). The carbon footprint of concrete. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 164(3), 119-131.
  • IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. et al. (eds.)]. In Press.
  • Jodidio, P. (2011). Architecture and automobiles. Images Publishing.
  • Lippiatt, B. C., & Cialone, C. (2011). Life-cycle assessment of buildings: A review. In C. A. Brebbia & E. Beriatos (Eds.), Sustainable development and planning V (pp. 85-96). WITT Press. doi: 10.2495/SDP110081
  • Machado, R. (1976). Old buildings as palimpsest: Towards a theory of remodeling. Progressive Architecture, (11), 46-49.
  • Pallasmaa, J. (2007). Spatial recall: Memory in architecture and landscape. In M. Treib (Ed.), Space place memory and imagination the temporal dimension of existential space (pp. 188-201). Routledge.
  • Panahi, S., Mirzaei, Q., & Mohammadikia, M. (2013). Comparative analysis of natural elements in the architecture of Tabriz and Kashan Houses. Middle East Journal of Scientific Research, (13), 507-517.
  • Park, C. W., Kwon, K. S., Kim, W. B., Min, B. K., Park, S. J., Sung, I. H., & Seok, J. (2009). Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151-173.
  • Parker, H. W., & Langer, A. M. (2018). The carbon footprint of plastics. Nature Climate Change, 8(4), 311-313.
  • Perino, M., Magrini, A., & D'Amico, G. (2017). The carbon footprint of flax and hemp textiles. Journal of Cleaner Production, (162), 1051-1060.
  • Reck, B. K., & Graedel, T. E. (2012). The carbon footprint of aluminum: Past, present, and future. Journal of Industrial Ecology, 16(6), 791-804.
  • Sav, S. (2017). Bir yeniden kullanım önerisi olarak Lefkoşa kent müzesi (Yayın No. 479281). [Yüksek Lisans tezi, İstanbul Teknik Üniversitesi]. Ulusal Tez Merkezi Veri Tabanı.
  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.,... Miller, H. (2007). IPCC fourth assessment report (AR4). Climate change, 374.
  • Song, J. S., & Lee, K. M. (2010). Development of a low-carbon product design system based on embedded GHG emissions. Resources, Conservation and Recycling, 54(9), 547-556.
  • Stone, S. (2004). Rereadings: Interior architecture and the design principles of remodeling existing buildings. RIBA Enterprises.
  • Su, J. C., Chu, C. H., & Wang, Y. T. (2012). A decision support system to estimate the carbon emission and cost of product designs. International Journal of Precision Engineering and Manufacturing, 13(7), 1037-1045.
  • Tang, D., Wang, Q., & Ullah, I. (2017). Optimization of product configuration in consideration of customer satisfaction and low carbon. International Journal of Production Research, 55(12), 3349-3373.
  • Tran, K. L. (2011). Architecture as palimpsest : a strategy of intermediacy (Version 1). Toronto Metropolitan University. https://doi.org/10.32920/ryerson.14656560.v1
  • Vahedi, A. (2009). Nature as a source of inspiration for architectural conceptual design. (Publication No. 11129). [Master's thesis, Eastern Mediterranean University]. EMU Institutional Repository.
  • VanderWerf, J. (2018). Hemp as a building material. Journal of Cleaner Production, (184), 411-420.
  • Yıldırım, G. (2009). Mekânların dönüşüm potansiyeli ve mimarlıkta 'palimpsest' kavramı (Yayın No. 251699). [Yüksek Lisans tezi, İstanbul Teknik Üniversitesi]. Ulusal Tez Merkezi Veri Tabanı.
  • Arkiv. (t.y.). Salt Beyoğlu Kış Bahçesi ve Ofisler. https://www.arkiv.com.tr/proje/salt-beyoglu-kisbahcesi-ve-ofisler/10381
  • Birleşmiş Milletler Çevre Programı (UNEP). (2021). https://www.mfa.gov.tr/birlesmis-milletler-cevre-programi.tr.mfa
  • Levy, N. (2020, 23 Nisan). Sustainable food and furniture features in zero-waste London restaurant Silo. https://www.dezeen.com/2020/04/23/silo-restaurant-interiors-sustainable/
  • Morris, A. (2021, 10 Mayıs). Yakusha Design balances rough and smooth surfaces in Kyiv eatery Istetyka. https://www.dezeen.com/2021/05/10/yakusha-design-istetyka-kyiv-restaurant-interior/
  • Nina+Co. (t.y.). Monc. https://ninaand.co/monc
  • Yücel, G. (2020). Sürdürülebilirlik - Nasıl tasarlayacağız? https://www.isikun.edu.tr/web/1695-15756-1-1/isik_universitesi/hakkinda/yonetim
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Interior Architecture
Journal Section Review Article
Authors

Kübra Yılmaz 0000-0002-5588-200X

Publication Date June 23, 2023
Submission Date June 30, 2022
Published in Issue Year 2023

Cite

APA Yılmaz, K. (2023). İç Mekânda Geçicilik Kavramının Karbon Ayak İzine Etkilerini Biyomalzeme Kullanımı ile Azaltma. Modular Journal, 6(1), 66-87. https://doi.org/10.59389/modular.1136468