Research Article
BibTex RIS Cite

A Geometric Method on Facade Form Design with Voronoi Diagram

Year 2020, Volume: 3 Issue: 2, 179 - 194, 28.12.2020

Abstract

Voronoi is a stochastic pattern that is the result of structural formation with the least material and least energy in nature. Therefore, Voronoi, which has become a biomimetic pattern, is a source of inspiration in architectural design and it has been increasingly used in this field. Modern design methods make it possible to adapt the process of self-organization of biological structures to architecture using mathematical models such as Voronoi. Especially on the facade, it is used on randomness and therefore irregularity as in nature and these irregular forms can be built thanks to the possibilities provided by technology. However, randomness limits the designer's ability to interfere with the form. In this study, a method was presented which including modeling process and material usage amount using Rhinoceros and Grasshopper software. With this method, it was aimed to make Voronoi a tool that the designer can control the process while producing patterns and to create a regular and systematic design principle by integrating it with the balance principle of geometry. The patterns whose impact areas were changed with symmetry, asymmetry and radial balance approaches were evaluated by comparing the amount of material used and their effect on the application process was evaluated. As a result, it was determined that similar increases occurred between the level of inclusion of direction and movement in the design and the level of randomness in the process of determining the most efficient one among alternative patterns in terms of material usage, as in nature.

References

  • Angelucci, G., & Mollaioli, F. (2018). Voronoi-like grid systems for tall buildings. Frontiers in Built Environment, 4(December), 1–20. https://doi.org/10.3389/fbuil.2018.00078
  • Arnheim, R. (1974). Art and visual perception: A Psychology of the Creative Eye (The New Ve). The New Version, University of California Press.
  • Aurenhammer, F. (1991). Voronoi Diagrams - A Survey of a Fundamental Data Structure. ACM Computing Surveys (CSUR), 23(3), 345–405.
  • Ching, F. D. K. (2007). Architecture: Form, Space, and Order. John Wiley & Sons.
  • Coates, P., Derix, C., Krakhofer, I. S. P., & Karanouh, A. (2005). Generating architectural spatial configurations. Two approaches using Voronoi tessellations and particle systems. Proceedings of the VIII Generative Art International Conference (GA2005), 1–18. http://hdl.handle.net/10552/853
  • Dimcic, M. (2011). Structural optimization of grid shells based on genetic algorithms [University of Stuttgart]. http://elib.uni-stuttgart.de/handle/11682/98
  • Fortune, S. (2017). Voronoı Dıagrams And Delaunay Trıangulatıons. In J. E. Toth, C. D., O’Rourke, J., & Goodman (Ed.), Handbook of Discrete and Computational Geometry (3rd ed., pp. 705–721). CRC press.
  • Friedrich, E. (2008). The Voronoi diagram in structural optimisation [University College London]. http://eprints.ucl.ac.uk/14631/
  • Gawell, E., & Nowak, A. (2015). Voronoi tessellation in shaping the architectural form from flat rod structure. PhD Interdisciplinary Journal, 1, 47–55. https://doi.org/10.1039/C5CE01790D
  • Harwiansyah, F. D. (2016). Application of voronoi diagram as treehouse design tool. International Journal of Education and Research, 4(7), 63–78.
  • Herr, C. M., & Fischer, T. (2013). Generative column and beam layout for reinforced concrete structures in China. Communications in Computer and Information Science, 369 CCIS, 84–95. https://doi.org/10.1007/978-3-642-38974-0-8
  • Kardasis, A. (2011). The Soft Grid. Massachusetts Teknoloji Enstitüsü. http://hdl.handle.net/1721.1/65438
  • Mele, E., Fraldi, M., Montuori, G. M., & Perrella, G. (2016). Non-conventional Structural Patterns for Tall Buildings : from Diagrid to Hexagrid and Beyond Non-conventional Structural Patterns for Tall Buildings : from Diagrid to Hexagrid and Beyond. Fifth International Workshop on Design in Civil and Environmental Engineering, October6-8, 2016, Sapienza University of Rome Representative, October.
  • Nowak, A., & Rokicki, W. (2016). On Surface Geometry Inspired by Natural Systems in Current Architecture. Journal Biuletyn of Polish Society for Geometry and Engineering Graphics, 29, 41–51.
  • Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial tessellations: Concepts and applications of Voronoi diagrams (2nd ed.). John Wiley & Sons.
  • Oxman, R., & Oxman, R. (2010). New Structuralism: Design, Engineering and Architectural Technologies. Architectural Design, 80(4), 14–23. https://doi.org/10.1002 / ad.1101
  • Rokicki, W., & Gawell, E. (2016). Voronoi diagrams – architectural and structural rod structure research model optimization. MAZOWSZE Studia Regionalne, 19, 155–164. https://doi.org/10.21858/msr.19.10
  • Terzidis, K. (2009). Algorithms for visual design using the processing language. John Wiley & Sons.
  • Tonelli, D., Pietroni, N., Cignoni, P., & Scopigno, R. (2016). Design and fabrication of grid-shells mockups. Italian Chapter Conference 2016 - Smart Tools and Apps in Computer Graphics, STAG 2016, 21–27. https://doi.org/10.2312/stag.20161360
  • Torghabehi, O. O., & Von Buelow, P. (2014). Genetic based form exploration of mid-rise structures using cell morphologies. In D. Gerbe & R. Goldstein (Eds.), In Proceedings of the Symposium on Simulation for Architecture & Urban Design, Society for Computer Simulation International (pp. 85–90).
  • Wu, T., & Zhang, L. (2016). Image-Guided Voronoi Aesthetic Patterns with an Uncertainty Algorithm Based on Cloud Model. Mathematical Problems in Engineering, 1–18. https://doi.org/10.1155/2016/9837123
  • Zhao, S., Gao, Y., Jiang, X., Yao, H., Chua, T. S., & Sun, X. (2014). Exploring principles-of-art features for image emotion recognition. MM ’14: Proceedings of the 22nd ACM International Conference on Multimedia, 47–56. https://doi.org/10.1145/2647868.2654930

Voronoi Diyagramı ile Mimari Cephe Tasarımı Üzerine Geometrik Bir Yöntem

Year 2020, Volume: 3 Issue: 2, 179 - 194, 28.12.2020

Abstract

Voronoi doğada en az malzeme ve en az enerji ile yapısal biçimlenmenin bir sonucu olan stokastik bir desendir. Bu sebeple biyomimetik bir desen olma özelliği kazanan Voronoi, mimari tasarıma ilham kaynağı olmakta ve bu alandaki kullanımı giderek artmaktadır. Modern tasarım yöntemleri, matematiksel modeller kullanarak Voronoi gibi biyolojik yapıların özörgütlenme sürecinin mimariye uyarlanmasını mümkün kılmaktadır. Özellikle cephedeki kullanımı doğada olduğu gibi rastgelelik ve dolayısıyla düzensizlik üzerine kurulu olmakta ve teknolojinin verdiği imkânlar sayesinde bu düzensiz biçimler inşa edilebilmektedir. Ancak rastgelelik, tasarımcının biçime müdahale etme durumunu kısıtlamaktadır. Çalışmada Rhinoceros ve Grasshopper yazılımları kullanılarak modelleme süreci ve malzeme kullanım miktarı bilgisini içeren bir yöntem sunulmaktadır. Bu yöntem ile Voronoi’yi, tasarımcının desen üretirken süreci kontrol edebildiği bir araç haline getirmek ve geometrinin denge ilkesi ile bütünleştirerek düzenli ve sistematik bir tasarım prensibi oluşturmak amaçlanmaktadır. Simetri, asimetri ve radyal denge yaklaşımları ile etki alanları değiştirilen desenler, kullanılan malzeme miktarına yönelik karşılaştırma ile ele alınmış ve uygulama sürecine etkisi değerlendirilmiştir. Sonuç olarak, alternatif desenler arasından malzeme kullanımı bakımından, doğada olduğu gibi, en verimli olanı tespit etme sürecinde yön ve hareketin tasarıma dahil edilme düzeyi ile rastgelelik düzeyi arasında benzer artışların oluştuğu tespit edilmiştir.

References

  • Angelucci, G., & Mollaioli, F. (2018). Voronoi-like grid systems for tall buildings. Frontiers in Built Environment, 4(December), 1–20. https://doi.org/10.3389/fbuil.2018.00078
  • Arnheim, R. (1974). Art and visual perception: A Psychology of the Creative Eye (The New Ve). The New Version, University of California Press.
  • Aurenhammer, F. (1991). Voronoi Diagrams - A Survey of a Fundamental Data Structure. ACM Computing Surveys (CSUR), 23(3), 345–405.
  • Ching, F. D. K. (2007). Architecture: Form, Space, and Order. John Wiley & Sons.
  • Coates, P., Derix, C., Krakhofer, I. S. P., & Karanouh, A. (2005). Generating architectural spatial configurations. Two approaches using Voronoi tessellations and particle systems. Proceedings of the VIII Generative Art International Conference (GA2005), 1–18. http://hdl.handle.net/10552/853
  • Dimcic, M. (2011). Structural optimization of grid shells based on genetic algorithms [University of Stuttgart]. http://elib.uni-stuttgart.de/handle/11682/98
  • Fortune, S. (2017). Voronoı Dıagrams And Delaunay Trıangulatıons. In J. E. Toth, C. D., O’Rourke, J., & Goodman (Ed.), Handbook of Discrete and Computational Geometry (3rd ed., pp. 705–721). CRC press.
  • Friedrich, E. (2008). The Voronoi diagram in structural optimisation [University College London]. http://eprints.ucl.ac.uk/14631/
  • Gawell, E., & Nowak, A. (2015). Voronoi tessellation in shaping the architectural form from flat rod structure. PhD Interdisciplinary Journal, 1, 47–55. https://doi.org/10.1039/C5CE01790D
  • Harwiansyah, F. D. (2016). Application of voronoi diagram as treehouse design tool. International Journal of Education and Research, 4(7), 63–78.
  • Herr, C. M., & Fischer, T. (2013). Generative column and beam layout for reinforced concrete structures in China. Communications in Computer and Information Science, 369 CCIS, 84–95. https://doi.org/10.1007/978-3-642-38974-0-8
  • Kardasis, A. (2011). The Soft Grid. Massachusetts Teknoloji Enstitüsü. http://hdl.handle.net/1721.1/65438
  • Mele, E., Fraldi, M., Montuori, G. M., & Perrella, G. (2016). Non-conventional Structural Patterns for Tall Buildings : from Diagrid to Hexagrid and Beyond Non-conventional Structural Patterns for Tall Buildings : from Diagrid to Hexagrid and Beyond. Fifth International Workshop on Design in Civil and Environmental Engineering, October6-8, 2016, Sapienza University of Rome Representative, October.
  • Nowak, A., & Rokicki, W. (2016). On Surface Geometry Inspired by Natural Systems in Current Architecture. Journal Biuletyn of Polish Society for Geometry and Engineering Graphics, 29, 41–51.
  • Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial tessellations: Concepts and applications of Voronoi diagrams (2nd ed.). John Wiley & Sons.
  • Oxman, R., & Oxman, R. (2010). New Structuralism: Design, Engineering and Architectural Technologies. Architectural Design, 80(4), 14–23. https://doi.org/10.1002 / ad.1101
  • Rokicki, W., & Gawell, E. (2016). Voronoi diagrams – architectural and structural rod structure research model optimization. MAZOWSZE Studia Regionalne, 19, 155–164. https://doi.org/10.21858/msr.19.10
  • Terzidis, K. (2009). Algorithms for visual design using the processing language. John Wiley & Sons.
  • Tonelli, D., Pietroni, N., Cignoni, P., & Scopigno, R. (2016). Design and fabrication of grid-shells mockups. Italian Chapter Conference 2016 - Smart Tools and Apps in Computer Graphics, STAG 2016, 21–27. https://doi.org/10.2312/stag.20161360
  • Torghabehi, O. O., & Von Buelow, P. (2014). Genetic based form exploration of mid-rise structures using cell morphologies. In D. Gerbe & R. Goldstein (Eds.), In Proceedings of the Symposium on Simulation for Architecture & Urban Design, Society for Computer Simulation International (pp. 85–90).
  • Wu, T., & Zhang, L. (2016). Image-Guided Voronoi Aesthetic Patterns with an Uncertainty Algorithm Based on Cloud Model. Mathematical Problems in Engineering, 1–18. https://doi.org/10.1155/2016/9837123
  • Zhao, S., Gao, Y., Jiang, X., Yao, H., Chua, T. S., & Sun, X. (2014). Exploring principles-of-art features for image emotion recognition. MM ’14: Proceedings of the 22nd ACM International Conference on Multimedia, 47–56. https://doi.org/10.1145/2647868.2654930
There are 22 citations in total.

Details

Primary Language English
Subjects Architecture
Journal Section Research Article
Authors

Helin Polat 0000-0002-4349-2258

Zeynep Yeşim İlerisoy 0000-0003-1903-9119

Publication Date December 28, 2020
Submission Date September 3, 2020
Published in Issue Year 2020Volume: 3 Issue: 2

Cite

APA Polat, H., & İlerisoy, Z. Y. (2020). A Geometric Method on Facade Form Design with Voronoi Diagram. Modular Journal, 3(2), 179-194.