Araştırma Makalesi
BibTex RIS Kaynak Göster

Ferri ve Ferro çekirdekli Yeni Destekler Üzerinde İmmobilize edilen Enzimin Biyokatalizör Özelliğinin Araştırılması

Yıl 2023, Cilt: 27 Sayı: 2, 313 - 320, 25.08.2023

Öz

Küre yapısındaki ferri ve ferro koordinasyon polimerleri sentezlendi. Koordinasyon polimerlerinin kimyasal ve yapısal karakterizasyonunda Taramalı Elektron Mikroskopisi (SEM), Enerji Dağılımlı X-Işını Spektroskopisi (EDX), Jel Geçirgenlik Kromatografisi (GPC), elemental analiz ve Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) kullanılmıştır. Glukano-1,5 lakton oluşumu ile ilgili kinetik parametrelerin karşılaştırılmak için glukoz oksidaz (GOD) enzimi koordinasyon polimerlerine immobilize edilmiştir. Analiz sonuçları, Fe2+ ve Fe3+ iyonlarının aynı desteğe farklı yapılarda koordinasyon gösterdiğini ortaya koymuştur. Birim yapı başına 2 mol Fe2+ iyonu ((PS-N-([Fe(CN)4L]K3)2) bağlanırken, 1 mol Fe3+ iyonunun (PS-N-([Fe(CN)2L]K)) bağlandığı görülmüştür. Km değerleri (PS-N-Fe2+)-GOD ve (PS-N-Fe3+)-GOD için sırasıyla 15,32 ve 10,93 olarak bulunmuştur. (PS-N-Fe3+)-GOD için Km değeri 0,5 kat daha yüksek bulunmuştur, böyle bir durumun olası nedeni Fe3+'ün daha büyük indirgenme potansiyelidir. Tekrarlanan 20 ölçümden sonra, (PS-N-Fe3+) polimeri üzerine immobilize edilen GOD'un %45,47 aktivitesi korunurken, (PS-N-Fe2+) polimeri üzerine immobilize edilen GOD'un %57,86 aktivitesi korunmuştur.

Destekleyen Kurum

Gazi Üniversitesi

Proje Numarası

05/2014-02

Teşekkür

Tüm yazarlar, Gazi Üniversitesi Proje Koordinasyon Birimine teşekkür eder.

Kaynakça

  • [1] Bocian, A., Szymanska, M., Brykczynska, D., Kubicki, M., Wałesa-Chorab, M., Roviello, G. N., Fik-Jaskółka, M. A., Gorczynski, A., Patroniak, V. 2019. New artificial biomimetic enzyme analogues based on iron(II/III) schiff base complexes:an effect of (Benz)imidazole organic moieties on phenoxazinone synthase and DNA recognition. Molecules, 24, 3173-3180.
  • [2] Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M. 2017. DNAbinding ability mode, spectroscopic studies, hydrophobicity, and in vitro antibacterial evaluation of some new Fe(II) complexes bearing ONO donors amino acid schiff bases. Arab. J. Chem., 10, S1835-S1846.
  • [3] Chen, H., Giri, N. C., Zhang, R., Yamane, K., Zhang, Y., Maroney, M., Costa, M. 2010. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J. Biol. Chem., 285, 7374-7383.
  • [4] Abdel, L. H., Ismail, N. M., Ismael, M., Abu-Dief, A. M., Ahmed, E. A. -H. 2017. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor schiff base ligand. J. Mol. Struct., 1134, 851-862.
  • [5] Gawali, S. L., Shelar, S. B., Gupta, J., Barick, K. C., Hassan, P. A. 2021. Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application. Int. J. Biol. Macromol., 166, 851-860.
  • [6] Pushkarev, A. S., Solovyev, M. A., Grigoriev, S. A., Pushkareva, I. V., Voloshin, Y. Z., Chornenka, N. V., Belov, A. S., Millet, P., Kalinichenko, V. N., Dedov, A. G. 2020. Electrocatalytic hydrogen production using the designed hexaphenanthrene iron, cobalt and ruthenium(II) cage complexes as cathode (pre) catalysts immobilized on carbonaceous substrates. Int. J. Hydrog. Energy. 45, 26206- 26216.
  • [7] Hernández‑Hernández, A. A., Aguirre‑Álvarez, G., Cariño‑Cortés, R., Mendoza‑Huizar, L., Jiménez‑Alvarado, R. 2020. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem. Pap. 74, 3809-3824.
  • [8] Britt, R. D., Rao, G., Tao, L. 2020. Bioassembly of complex iron-sulfur enzymes: hydrogenases and nitrogenases. Nat. Rev. Chem. 4, 542-549.
  • [9] Lubitz, W., Ogata, H., Rüdiger, O., Reijerse, E. 2014. Hydrogenases. ACS Chem. Rev. 114, 4081- 4148.
  • [10] Gail, E., Gos, S., Kulzer, R., Lorösch, J., Rubo, A., Sauer, M., Kellens, R., Reddy, J., Steier, N., Hasenpusch, W. 2011. Cyano compounds, inorganic. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
  • [11] DiCosimo, R., McAuliffe, J., Poulose, A. J., Bohlmann, G. 2013. Industrial use of immobilized enzymes. Chem. Soc Rev. 42, 6437- 6474.
  • [12] Van Staveren, D. R., Metzler-Nolte, N. 2004. Bioorganometallic chemistry of ferrocene. Chem. Rev. 104, 5931-5985.
  • [13] Saravanakumar, D., Sengottuvelan, N., Narayanan, V., Kandaswamy, M., Varghese, T. L. 2013. Burning-rate enhancement of a highenergy rocket composite solid propellant based on ferrocene-grafted hydroxyl-terminated polybutadiene binder. J. Appl. Polym. Sci., 119, 2517-2524.
  • [14] Cheng, Z., Zhang, G., Fan, X., Bi, F., Zhao, F., Zhang, W. 2014. Synthesis, characterization, migration and catalytic effects of energetic ionic ferrocene compounds on thermal decomposition of main components of solid propellants. Inorg. Chim. Acta., 421, 191-199.
  • [15] Garrett, R. H., Grisham, C. M. 1999. Biochemistry. 2nd ed. Saunders College Publishing, pp 426- 427.
  • [16] Kayhan, S. 2013. Nanoplatforms attached schiff bases by condensation method; investigation of Glucose oxidase enzyme as biocatalysts. M.S. thesis, Department of Chemistry, Gazi University Institute of Science, Ankara, Turkey.
  • [17] Hasanoğlu Özkan, E., Sarı, N. 2020. Use of immobilized novel dendritic molecules as a marker for the detection of glucose in artificial urine. J. Mol. Struct., 1201, 127134.
  • [18] Kurnaz Yetim, N., Hasanoğlu Özkan, E., Sarı, N. 2017. Immobilization of GOx on Trp/Trp-Fc functionalized nanospheres: improved of reusability and stability. GU J Sci, 30, 114-122.
  • [19] Gubitz, G., Kunssberg, E., Van Zoonen, P., Jansen, H., Gooijer, C., Velthorst, N. H., Fei, R. W. 1988. Chemically Modified Surfaces (Edt. Leyden, D. E., Collins, W. T.), London, Gordon and Breach, pp. 110-119.
  • [20] Kurnaz Yetim, N., Hasanoğlu Özkan, E., Daniş, B., Tümtürk, H., Sarı, N. 2015. Research on the repeated use of novel ferrocene-tagged nanomaterial for determination of glucose. Int. J. Polym. Mater. 64, 888-893.
  • [21] Bankar, S. B., Bule, M. V., Singhal, R. S., Ananthanarayan, L. 2009. Glucose oxidase-An overview. Biotechnol. Ad. 27, 489-501.
  • [22] Ozdem, N., Hasanoğlu Ozkan, E., Sarı, N., Arslan, F., Tümtürk, H. 2014. Immobilization of glucose oxidase attached to new nanospheres including azomethine. Macromol. Res. 22, 1282-1287.
  • [23] Kurnaz Yetim, N., Sarı, N. 2019. Novel dendrimers containing redox mediator: enzyme immobilization and applications. J. Mol. Struc. 1191, 158-164.
  • [24] Rauf, A., İhsan, A., Akhtar, K., Ghauri, M. A., Rahman, M., Anvar, M. A., Khalid, A. M. 2006. Glucose oxidase immobilization on a novel cellulose acetate-polymethylmetacrylate. J. Biotechnol. 121, 351-360.

Investigation Biocatalysts of Immobilized Enzyme on New Supports with Ferri and Ferro Nuclei

Yıl 2023, Cilt: 27 Sayı: 2, 313 - 320, 25.08.2023

Öz

Ferri and ferro coordination polymers in sphere structure were synthesized. Scanning Electron Microscopy (SEM) Energy Dispersive X-Ray Spectroscopy (EDX), Gel Permeation Chromatography (GPC), elemental analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) were performed for chemical and structural characterization of the coordination polymers. Glucose oxidase (GOD) enzyme immobilized to compare of kinetic parameters deal with glucano-1,5 lacton formation. Analyses results illustrate that structures coordination of ions Fe2+ and Fe3+ are different to the same support. It was seen that 2 mol of Fe2+ ion ((PS-N-([Fe(CN)4L]K3)2) was bound per unit structure while 1 mol of Fe3+ ion (PS-N-([Fe(CN)2L]K)) is attaching. Km values of were found as 15.32 and 10.93 for (PS-N-Fe2+)-GOD and (PS-N-Fe3+)-GOD, respectively. Km value for (PS-N-Fe3+)-GOD was found to be 0.5 times higher, possible reason of such a case is the larger reduction potential of Fe3+. As the charge on the coordination structure increased, the enzyme's affinity for the substrate increased. After 20 repeated measurements, GOD immobilized on (PS-N-Fe3+) polymer retained 45.47% activity, while GOD immobilized on (PS-N-Fe2+) polymer retained 57.86% activity.

Proje Numarası

05/2014-02

Kaynakça

  • [1] Bocian, A., Szymanska, M., Brykczynska, D., Kubicki, M., Wałesa-Chorab, M., Roviello, G. N., Fik-Jaskółka, M. A., Gorczynski, A., Patroniak, V. 2019. New artificial biomimetic enzyme analogues based on iron(II/III) schiff base complexes:an effect of (Benz)imidazole organic moieties on phenoxazinone synthase and DNA recognition. Molecules, 24, 3173-3180.
  • [2] Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M. 2017. DNAbinding ability mode, spectroscopic studies, hydrophobicity, and in vitro antibacterial evaluation of some new Fe(II) complexes bearing ONO donors amino acid schiff bases. Arab. J. Chem., 10, S1835-S1846.
  • [3] Chen, H., Giri, N. C., Zhang, R., Yamane, K., Zhang, Y., Maroney, M., Costa, M. 2010. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J. Biol. Chem., 285, 7374-7383.
  • [4] Abdel, L. H., Ismail, N. M., Ismael, M., Abu-Dief, A. M., Ahmed, E. A. -H. 2017. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor schiff base ligand. J. Mol. Struct., 1134, 851-862.
  • [5] Gawali, S. L., Shelar, S. B., Gupta, J., Barick, K. C., Hassan, P. A. 2021. Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application. Int. J. Biol. Macromol., 166, 851-860.
  • [6] Pushkarev, A. S., Solovyev, M. A., Grigoriev, S. A., Pushkareva, I. V., Voloshin, Y. Z., Chornenka, N. V., Belov, A. S., Millet, P., Kalinichenko, V. N., Dedov, A. G. 2020. Electrocatalytic hydrogen production using the designed hexaphenanthrene iron, cobalt and ruthenium(II) cage complexes as cathode (pre) catalysts immobilized on carbonaceous substrates. Int. J. Hydrog. Energy. 45, 26206- 26216.
  • [7] Hernández‑Hernández, A. A., Aguirre‑Álvarez, G., Cariño‑Cortés, R., Mendoza‑Huizar, L., Jiménez‑Alvarado, R. 2020. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem. Pap. 74, 3809-3824.
  • [8] Britt, R. D., Rao, G., Tao, L. 2020. Bioassembly of complex iron-sulfur enzymes: hydrogenases and nitrogenases. Nat. Rev. Chem. 4, 542-549.
  • [9] Lubitz, W., Ogata, H., Rüdiger, O., Reijerse, E. 2014. Hydrogenases. ACS Chem. Rev. 114, 4081- 4148.
  • [10] Gail, E., Gos, S., Kulzer, R., Lorösch, J., Rubo, A., Sauer, M., Kellens, R., Reddy, J., Steier, N., Hasenpusch, W. 2011. Cyano compounds, inorganic. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
  • [11] DiCosimo, R., McAuliffe, J., Poulose, A. J., Bohlmann, G. 2013. Industrial use of immobilized enzymes. Chem. Soc Rev. 42, 6437- 6474.
  • [12] Van Staveren, D. R., Metzler-Nolte, N. 2004. Bioorganometallic chemistry of ferrocene. Chem. Rev. 104, 5931-5985.
  • [13] Saravanakumar, D., Sengottuvelan, N., Narayanan, V., Kandaswamy, M., Varghese, T. L. 2013. Burning-rate enhancement of a highenergy rocket composite solid propellant based on ferrocene-grafted hydroxyl-terminated polybutadiene binder. J. Appl. Polym. Sci., 119, 2517-2524.
  • [14] Cheng, Z., Zhang, G., Fan, X., Bi, F., Zhao, F., Zhang, W. 2014. Synthesis, characterization, migration and catalytic effects of energetic ionic ferrocene compounds on thermal decomposition of main components of solid propellants. Inorg. Chim. Acta., 421, 191-199.
  • [15] Garrett, R. H., Grisham, C. M. 1999. Biochemistry. 2nd ed. Saunders College Publishing, pp 426- 427.
  • [16] Kayhan, S. 2013. Nanoplatforms attached schiff bases by condensation method; investigation of Glucose oxidase enzyme as biocatalysts. M.S. thesis, Department of Chemistry, Gazi University Institute of Science, Ankara, Turkey.
  • [17] Hasanoğlu Özkan, E., Sarı, N. 2020. Use of immobilized novel dendritic molecules as a marker for the detection of glucose in artificial urine. J. Mol. Struct., 1201, 127134.
  • [18] Kurnaz Yetim, N., Hasanoğlu Özkan, E., Sarı, N. 2017. Immobilization of GOx on Trp/Trp-Fc functionalized nanospheres: improved of reusability and stability. GU J Sci, 30, 114-122.
  • [19] Gubitz, G., Kunssberg, E., Van Zoonen, P., Jansen, H., Gooijer, C., Velthorst, N. H., Fei, R. W. 1988. Chemically Modified Surfaces (Edt. Leyden, D. E., Collins, W. T.), London, Gordon and Breach, pp. 110-119.
  • [20] Kurnaz Yetim, N., Hasanoğlu Özkan, E., Daniş, B., Tümtürk, H., Sarı, N. 2015. Research on the repeated use of novel ferrocene-tagged nanomaterial for determination of glucose. Int. J. Polym. Mater. 64, 888-893.
  • [21] Bankar, S. B., Bule, M. V., Singhal, R. S., Ananthanarayan, L. 2009. Glucose oxidase-An overview. Biotechnol. Ad. 27, 489-501.
  • [22] Ozdem, N., Hasanoğlu Ozkan, E., Sarı, N., Arslan, F., Tümtürk, H. 2014. Immobilization of glucose oxidase attached to new nanospheres including azomethine. Macromol. Res. 22, 1282-1287.
  • [23] Kurnaz Yetim, N., Sarı, N. 2019. Novel dendrimers containing redox mediator: enzyme immobilization and applications. J. Mol. Struc. 1191, 158-164.
  • [24] Rauf, A., İhsan, A., Akhtar, K., Ghauri, M. A., Rahman, M., Anvar, M. A., Khalid, A. M. 2006. Glucose oxidase immobilization on a novel cellulose acetate-polymethylmetacrylate. J. Biotechnol. 121, 351-360.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Elvan Hasanoğlu Özkan 0000-0001-7338-4015

Gamze Kaya Yılmaz 0000-0003-0082-6059

Nurdan Kurnaz Yetim 0000-0001-6227-0346

Nurşen Sarı 0000-0002-4764-7747

Proje Numarası 05/2014-02
Yayımlanma Tarihi 25 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 2

Kaynak Göster

APA Hasanoğlu Özkan, E., Kaya Yılmaz, G., Kurnaz Yetim, N., Sarı, N. (2023). Investigation Biocatalysts of Immobilized Enzyme on New Supports with Ferri and Ferro Nuclei. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 313-320. https://doi.org/10.19113/sdufenbed.1237987
AMA Hasanoğlu Özkan E, Kaya Yılmaz G, Kurnaz Yetim N, Sarı N. Investigation Biocatalysts of Immobilized Enzyme on New Supports with Ferri and Ferro Nuclei. SDÜ Fen Bil Enst Der. Ağustos 2023;27(2):313-320. doi:10.19113/sdufenbed.1237987
Chicago Hasanoğlu Özkan, Elvan, Gamze Kaya Yılmaz, Nurdan Kurnaz Yetim, ve Nurşen Sarı. “Investigation Biocatalysts of Immobilized Enzyme on New Supports With Ferri and Ferro Nuclei”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 2 (Ağustos 2023): 313-20. https://doi.org/10.19113/sdufenbed.1237987.
EndNote Hasanoğlu Özkan E, Kaya Yılmaz G, Kurnaz Yetim N, Sarı N (01 Ağustos 2023) Investigation Biocatalysts of Immobilized Enzyme on New Supports with Ferri and Ferro Nuclei. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 313–320.
IEEE E. Hasanoğlu Özkan, G. Kaya Yılmaz, N. Kurnaz Yetim, ve N. Sarı, “Investigation Biocatalysts of Immobilized Enzyme on New Supports with Ferri and Ferro Nuclei”, SDÜ Fen Bil Enst Der, c. 27, sy. 2, ss. 313–320, 2023, doi: 10.19113/sdufenbed.1237987.
ISNAD Hasanoğlu Özkan, Elvan vd. “Investigation Biocatalysts of Immobilized Enzyme on New Supports With Ferri and Ferro Nuclei”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (Ağustos 2023), 313-320. https://doi.org/10.19113/sdufenbed.1237987.
JAMA Hasanoğlu Özkan E, Kaya Yılmaz G, Kurnaz Yetim N, Sarı N. Investigation Biocatalysts of Immobilized Enzyme on New Supports with Ferri and Ferro Nuclei. SDÜ Fen Bil Enst Der. 2023;27:313–320.
MLA Hasanoğlu Özkan, Elvan vd. “Investigation Biocatalysts of Immobilized Enzyme on New Supports With Ferri and Ferro Nuclei”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 2, 2023, ss. 313-20, doi:10.19113/sdufenbed.1237987.
Vancouver Hasanoğlu Özkan E, Kaya Yılmaz G, Kurnaz Yetim N, Sarı N. Investigation Biocatalysts of Immobilized Enzyme on New Supports with Ferri and Ferro Nuclei. SDÜ Fen Bil Enst Der. 2023;27(2):313-20.

e-ISSN: 1308-6529