Araştırma Makalesi
BibTex RIS Kaynak Göster

Preparation of Calcite-Precipitating Bacteria-Embedded Magnesium Phosphate Cement for Self-Healing Application

Yıl 2024, Cilt: 9 Sayı: 1, 1 - 10, 26.03.2024
https://doi.org/10.47481/jscmt.1404010

Öz

The present study was undertaken to check the feasibility of magnesium phosphate cement (MPC) for the immobilization of calcite-precipitating bacteria. An aqueous route of MPC synthesis was followed using magnesium phosphate Mg3(PO4)2 powder and ammonium phosphate solution. The Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis confirmed the synthesis of MPC. The thermal decomposition analysis (TGA) showed decomposition of struvite between 50–60 °C - Paenibacillus sp. NCIM 5410 was used due to its urea hydrolysis ability. pH 9 was found to be optimum for urea hydrolysis. The urea hydrolysis steadily decreased with an increase in temperature from 30 °C to 60 °C. The hydrolysis was seen to increase with an incubation time of up to 72 h and subsequently reduced. The bacteria showed 90% urea hydrolysis at pH 9, 30 °C temperature, and after 72 h. The bacterial spores were incorporated during MPC synthesis, which helped their immobilization. The bacterial spore-containing MPC decomposed around 70 (±0.48)% of urea. Further, calcite precipitation was studied. The precipitate formed due to bacterial action in the MPC crack showed the presence of calcium. The calcite precipitation helped to reduce the water absorption by MPC specimens. The spore containing MPC specimens showed around 2.62 (±0.55) % water absorption. These results suggest that it is possible to synthesize bioactive MPC by immobilizing bacterial spores in MPC.

Etik Beyan

Experiments do not involve animals, humans or pathogenic microorganisms so no ethical clearance is required

Destekleyen Kurum

Not applicable

Proje Numarası

Not applicable

Teşekkür

Thanks

Kaynakça

  • Walling, S. A., & Provis, J. L. (2016). Magnesia-based cements: A journey of 150 years, and cements for the future? Chem Rev, 116(7), 4170–4204. [CrossRef]
  • Nasreen, S., & Suresh Babu, T. (2015). Effect of bacteria on 28 days split tensile strength of concrete and its stress-strain curves. Int J Civ Struct Eng Res, 3(2), 33–38.
  • Wagh, A. S. (2004). Chemically bonded phosphate ceramic matrix composites. In Chemically Bonded Phosphate Ceramics. (pp. 157–176). Elsevier. [CrossRef]
  • Mao, W., Cao, C., Li, X., Qian, J., & You, C. (2022). Preparation of magnesium ammonium phosphate mortar by manufactured limestone sand using compound defoaming agents for improved strength and impermeability. Buildings, 12(3), 267. [CrossRef]
  • Qin, J., Qian, J., You, C., Fan, Y., Li, Z., & Wang, H. (2018). Bond behavior and interfacial micro-characteristics of magnesium phosphate cement onto old concrete substrate. Constr Build Mater, 167, 166–176. [CrossRef]
  • Hong, S., Zhang, J., Liang, H., Xiao, J., Huang, C., Wang, G., Hu, H., Liu, Y., Xu, Y., Xing, F., & Dong, B. (2018). Investigation on early hydration features of magnesium potassium phosphate cementitious material with the electrodeless resistivity method. Cement Concrete Compos, 90, 235–240. [CrossRef]
  • Jia, X., Li, J., Wang, P., Qian, J., & Tang, M. (2019). Preparation and mechanical properties of magnesium phosphate cement for rapid construction repair in ice and snow. Constr Build Mater, 229, 116927. [CrossRef]
  • Haque, M. A., & Chen, B. (2019). Research progress on magnesium phosphate cement: A review. Constr Build Mater, 211, 885–898. [CrossRef]
  • Zhou, H., Agarwal, A. K., Goel, V. K., & Bhaduri, S. B. (2013). Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem. Mater Sci Eng C, 33(7), 4288–4294. [CrossRef]
  • Xing, S., & Wu, C. (2018). Preparation of magnesium phosphate cement and application in concrete repair. MATEC Web Conf, 142, 02007. [CrossRef]
  • Li, Y., Bai, W., & Shi, T. (2017). A study of the bonding performance of magnesium phosphate cement on mortar and concrete. Constr Build Mater, 142, 459–468. [CrossRef]
  • Jia, L., Zhao, F., Yao, K., & Du, H. (2021). Bond performance of repair mortar made with magnesium phosphate cement and ferroaluminate cement. Constr Build Mater, 279, 122398. [CrossRef]
  • Li, Y., & Chen, B. (2013). Factors that affect the properties of magnesium phosphate cement. Constr Build Mater, 47, 977–983. [CrossRef]
  • Gardner, L. J., Bernal, S. A., Walling, S. A., Corkhill, C. L., Provis, J. L., & Hyatt, N. C. (2015). Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag. Cement Concrete Res, 74, 78–87. [CrossRef]
  • Ma, H., Xu, B., Liu, J., Pei, H., & Li, Z. (2014). Effects of water content, magnesia-to-phosphate molar ratio, and age on pore structure, strength, and permeability of magnesium potassium phosphate cement paste. Mater Des, 64, 497–502. [CrossRef]
  • Jia, X., Luo, J., Zhang, W., Qian, J., Li, J., Wang, P., & Tang, M. (2020). Preparation and application of self-curing magnesium phosphate cement concrete with high early strength in severe cold environments. Materials, 13(23), 5587. [CrossRef]
  • Jadhav, U. U., Lahoti, M., Chen, Z., Qiu, J., Cao, B., & Yang, E. H. (2018). Viability of bacterial spores and crack healing in bacteria-containing geopolymer. Constr Build Mater, 169, 716–723. [CrossRef]
  • Doctolero, J. Z. S., Beltran, A. B., Uba, M. O., Tigue, A. A. S., & Promentilla, M. A. B. (2020). Self-healing biogeopolymers using biochar-immobilized spores of pure-and-co-cultures of bacteria. Minerals, 10(12), 1114. [CrossRef]
  • Ekinci, E., Turkmen, İ., & Birhanli, E. (2022). Performance of self-healing geopolymer paste produced using Bacillus subtilis. Constr Build Mater, 325, 126837. [CrossRef]
  • Soltmann, U., Nies, B., & Böttcher, H. (2011). Cements with embedded living microorganisms – a new class of biocatalytic composite materials for application in bioremediation, biotechnology. Adv Eng Mater, 13(1-2), B25–B31. [CrossRef]
  • Liu, F., Cheng, X., Miu, J., Li, X., Yin, R., Wang, J., & Qu, Y. (2021). Application of different methods to determine urease activity in enzyme engineering experiment and production. E3S Web Conf, 251, 02057. [CrossRef]
  • Brown, J. V., Wiles, R., & Prentice, G. A. (1979). The effect of a modified tyndallization process upon the sporeforming bacteria of milk and cream. Int J Dairy Technol, 32(2), 109–112. [CrossRef]
  • Aliyu, A. D., Mustafa, M., Aziz, N. A. A., Kong, Y. C., & Hadi, N. S. (2023). Assessing indigenous soil ureolytic bacteria as potential agents for soil stabilization. J Trop Biodivers Biotechnol, 8(1), 75128. [CrossRef]
  • Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. J Adv Res, 13, 59–67. [CrossRef]
  • Singh, A. K., Singh, M., & Verma, N. (2017). Extraction, purification, kinetic characterization, and immobilization of urease from bacillus sphaericus MTCC 5100. Biocatal Agric Biotechnol, 12, 341–347. [CrossRef]
  • Jiang, N. J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecol Eng, 90, 96–104. [CrossRef]
  • Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2016). Applicability of bacterial biocementation in sustainable construction materials. Asia‐Pac J Chem Eng, 11(5), 795–802. [CrossRef]
  • Christel, T., Christ, S., Barralet, J. E., Groll, J., & Gbureck, U. (2015). Chelate bonding mechanism in a novel magnesium phosphate bone cement. J Am Ceram Soc, 98(3), 694–697. [CrossRef]
  • Britvin, S. N., Ferraris, G., Ivaldi, G., Bogdanova, A. N., & Chukanov, N. V. (2002). Cattiite, Mg3(PO4)2·22H2O, a new mineral from Zhelezny Mine (Kovdor Massif, Kola Peninsula, Russia). Neues Jahrb Min Monatsh, 2002(4), 160–168. [CrossRef]
  • Leela, S., Ranishree, J. K., Perumal, R. K., & Ramasamy, R. (2019). Characterization of struvite produced by an algal associated agarolytic bacterium exiguobacterium aestuarii St. SR 101. J Pure Appl Microbiol, 13(2), 1227–1234. [CrossRef]
  • Suguna, K., Thenmozhi, M., & Sekar, C. (2012). Growth, spectral, structural and mechanical properties of struvite crystal grown in presence of sodium fluoride. Bull Mater Sci, 35, 701–706. [CrossRef]
  • Lahalle, H., Patapy, C., Glid, M., Renaudin, G., & Cyr, M. (2019). Microstructural evolution/durability of magnesium phosphate cement paste over time in neutral and basic environments. Cement Concrete Res, 122, 42–58. [CrossRef]
  • Liu, Y., Kumar, S., Kwag, J. H., & Ra, C. (2013). Magnesium ammonium phosphate formation, recovery and its application as valuable resources: A review. J Chem Technol Biotechnol, 88(2), 181–189. [CrossRef]
  • Tansel, B., Lunn, G., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504–514. [CrossRef]
  • Yu, J., Qian, J., Wang, F., Li, Z., & Jia, X. (2020). Preparation and properties of a magnesium phosphate cement with dolomite. Cement Concrete Res, 138, 106235. [CrossRef]
  • Hövelmann, J., Stawski, T. M., Besselink, R., Freeman, H. M., Dietmann, K. M., Mayanna, S., Pauw, B. R., & Benning, L. G. (2019). A template-free and low temperature method for the synthesis of mesoporous magnesium phosphate with uniform pore structure and high surface area. Nanoscale, 11(14), 6939–6951. [CrossRef]
  • Wang, J. Y., De Belie, N., & Verstraete, W. (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol, 39(4), 567–577. [CrossRef]
  • Wang, J. Y., Soens, H., Verstraete, W., & De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement Concrete Res, 56, 139–152. [CrossRef]
Yıl 2024, Cilt: 9 Sayı: 1, 1 - 10, 26.03.2024
https://doi.org/10.47481/jscmt.1404010

Öz

Proje Numarası

Not applicable

Kaynakça

  • Walling, S. A., & Provis, J. L. (2016). Magnesia-based cements: A journey of 150 years, and cements for the future? Chem Rev, 116(7), 4170–4204. [CrossRef]
  • Nasreen, S., & Suresh Babu, T. (2015). Effect of bacteria on 28 days split tensile strength of concrete and its stress-strain curves. Int J Civ Struct Eng Res, 3(2), 33–38.
  • Wagh, A. S. (2004). Chemically bonded phosphate ceramic matrix composites. In Chemically Bonded Phosphate Ceramics. (pp. 157–176). Elsevier. [CrossRef]
  • Mao, W., Cao, C., Li, X., Qian, J., & You, C. (2022). Preparation of magnesium ammonium phosphate mortar by manufactured limestone sand using compound defoaming agents for improved strength and impermeability. Buildings, 12(3), 267. [CrossRef]
  • Qin, J., Qian, J., You, C., Fan, Y., Li, Z., & Wang, H. (2018). Bond behavior and interfacial micro-characteristics of magnesium phosphate cement onto old concrete substrate. Constr Build Mater, 167, 166–176. [CrossRef]
  • Hong, S., Zhang, J., Liang, H., Xiao, J., Huang, C., Wang, G., Hu, H., Liu, Y., Xu, Y., Xing, F., & Dong, B. (2018). Investigation on early hydration features of magnesium potassium phosphate cementitious material with the electrodeless resistivity method. Cement Concrete Compos, 90, 235–240. [CrossRef]
  • Jia, X., Li, J., Wang, P., Qian, J., & Tang, M. (2019). Preparation and mechanical properties of magnesium phosphate cement for rapid construction repair in ice and snow. Constr Build Mater, 229, 116927. [CrossRef]
  • Haque, M. A., & Chen, B. (2019). Research progress on magnesium phosphate cement: A review. Constr Build Mater, 211, 885–898. [CrossRef]
  • Zhou, H., Agarwal, A. K., Goel, V. K., & Bhaduri, S. B. (2013). Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem. Mater Sci Eng C, 33(7), 4288–4294. [CrossRef]
  • Xing, S., & Wu, C. (2018). Preparation of magnesium phosphate cement and application in concrete repair. MATEC Web Conf, 142, 02007. [CrossRef]
  • Li, Y., Bai, W., & Shi, T. (2017). A study of the bonding performance of magnesium phosphate cement on mortar and concrete. Constr Build Mater, 142, 459–468. [CrossRef]
  • Jia, L., Zhao, F., Yao, K., & Du, H. (2021). Bond performance of repair mortar made with magnesium phosphate cement and ferroaluminate cement. Constr Build Mater, 279, 122398. [CrossRef]
  • Li, Y., & Chen, B. (2013). Factors that affect the properties of magnesium phosphate cement. Constr Build Mater, 47, 977–983. [CrossRef]
  • Gardner, L. J., Bernal, S. A., Walling, S. A., Corkhill, C. L., Provis, J. L., & Hyatt, N. C. (2015). Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag. Cement Concrete Res, 74, 78–87. [CrossRef]
  • Ma, H., Xu, B., Liu, J., Pei, H., & Li, Z. (2014). Effects of water content, magnesia-to-phosphate molar ratio, and age on pore structure, strength, and permeability of magnesium potassium phosphate cement paste. Mater Des, 64, 497–502. [CrossRef]
  • Jia, X., Luo, J., Zhang, W., Qian, J., Li, J., Wang, P., & Tang, M. (2020). Preparation and application of self-curing magnesium phosphate cement concrete with high early strength in severe cold environments. Materials, 13(23), 5587. [CrossRef]
  • Jadhav, U. U., Lahoti, M., Chen, Z., Qiu, J., Cao, B., & Yang, E. H. (2018). Viability of bacterial spores and crack healing in bacteria-containing geopolymer. Constr Build Mater, 169, 716–723. [CrossRef]
  • Doctolero, J. Z. S., Beltran, A. B., Uba, M. O., Tigue, A. A. S., & Promentilla, M. A. B. (2020). Self-healing biogeopolymers using biochar-immobilized spores of pure-and-co-cultures of bacteria. Minerals, 10(12), 1114. [CrossRef]
  • Ekinci, E., Turkmen, İ., & Birhanli, E. (2022). Performance of self-healing geopolymer paste produced using Bacillus subtilis. Constr Build Mater, 325, 126837. [CrossRef]
  • Soltmann, U., Nies, B., & Böttcher, H. (2011). Cements with embedded living microorganisms – a new class of biocatalytic composite materials for application in bioremediation, biotechnology. Adv Eng Mater, 13(1-2), B25–B31. [CrossRef]
  • Liu, F., Cheng, X., Miu, J., Li, X., Yin, R., Wang, J., & Qu, Y. (2021). Application of different methods to determine urease activity in enzyme engineering experiment and production. E3S Web Conf, 251, 02057. [CrossRef]
  • Brown, J. V., Wiles, R., & Prentice, G. A. (1979). The effect of a modified tyndallization process upon the sporeforming bacteria of milk and cream. Int J Dairy Technol, 32(2), 109–112. [CrossRef]
  • Aliyu, A. D., Mustafa, M., Aziz, N. A. A., Kong, Y. C., & Hadi, N. S. (2023). Assessing indigenous soil ureolytic bacteria as potential agents for soil stabilization. J Trop Biodivers Biotechnol, 8(1), 75128. [CrossRef]
  • Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. J Adv Res, 13, 59–67. [CrossRef]
  • Singh, A. K., Singh, M., & Verma, N. (2017). Extraction, purification, kinetic characterization, and immobilization of urease from bacillus sphaericus MTCC 5100. Biocatal Agric Biotechnol, 12, 341–347. [CrossRef]
  • Jiang, N. J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecol Eng, 90, 96–104. [CrossRef]
  • Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2016). Applicability of bacterial biocementation in sustainable construction materials. Asia‐Pac J Chem Eng, 11(5), 795–802. [CrossRef]
  • Christel, T., Christ, S., Barralet, J. E., Groll, J., & Gbureck, U. (2015). Chelate bonding mechanism in a novel magnesium phosphate bone cement. J Am Ceram Soc, 98(3), 694–697. [CrossRef]
  • Britvin, S. N., Ferraris, G., Ivaldi, G., Bogdanova, A. N., & Chukanov, N. V. (2002). Cattiite, Mg3(PO4)2·22H2O, a new mineral from Zhelezny Mine (Kovdor Massif, Kola Peninsula, Russia). Neues Jahrb Min Monatsh, 2002(4), 160–168. [CrossRef]
  • Leela, S., Ranishree, J. K., Perumal, R. K., & Ramasamy, R. (2019). Characterization of struvite produced by an algal associated agarolytic bacterium exiguobacterium aestuarii St. SR 101. J Pure Appl Microbiol, 13(2), 1227–1234. [CrossRef]
  • Suguna, K., Thenmozhi, M., & Sekar, C. (2012). Growth, spectral, structural and mechanical properties of struvite crystal grown in presence of sodium fluoride. Bull Mater Sci, 35, 701–706. [CrossRef]
  • Lahalle, H., Patapy, C., Glid, M., Renaudin, G., & Cyr, M. (2019). Microstructural evolution/durability of magnesium phosphate cement paste over time in neutral and basic environments. Cement Concrete Res, 122, 42–58. [CrossRef]
  • Liu, Y., Kumar, S., Kwag, J. H., & Ra, C. (2013). Magnesium ammonium phosphate formation, recovery and its application as valuable resources: A review. J Chem Technol Biotechnol, 88(2), 181–189. [CrossRef]
  • Tansel, B., Lunn, G., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504–514. [CrossRef]
  • Yu, J., Qian, J., Wang, F., Li, Z., & Jia, X. (2020). Preparation and properties of a magnesium phosphate cement with dolomite. Cement Concrete Res, 138, 106235. [CrossRef]
  • Hövelmann, J., Stawski, T. M., Besselink, R., Freeman, H. M., Dietmann, K. M., Mayanna, S., Pauw, B. R., & Benning, L. G. (2019). A template-free and low temperature method for the synthesis of mesoporous magnesium phosphate with uniform pore structure and high surface area. Nanoscale, 11(14), 6939–6951. [CrossRef]
  • Wang, J. Y., De Belie, N., & Verstraete, W. (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol, 39(4), 567–577. [CrossRef]
  • Wang, J. Y., Soens, H., Verstraete, W., & De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement Concrete Res, 56, 139–152. [CrossRef]
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Yapım Mühendisliği
Bölüm Makaleler
Yazarlar

Deeksha Patil Bu kişi benim 0000-0002-9443-6627

Alankar Sapkal Bu kişi benim 0009-0003-3863-4551

Shreyas Pranav Bu kişi benim 0000-0002-7018-666X

Mukund Lahoti Bu kişi benim 0000-0002-3971-2705

Ashish Gadekar Bu kişi benim 0009-0006-3237-2548

Anupama Pable Bu kişi benim 0000-0002-1465-5994

Umesh Jadhav 0000-0001-8144-6431

Proje Numarası Not applicable
Erken Görünüm Tarihi 26 Mart 2024
Yayımlanma Tarihi 26 Mart 2024
Gönderilme Tarihi 12 Aralık 2023
Kabul Tarihi 1 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 1

Kaynak Göster

APA Patil, D., Sapkal, A., Pranav, S., Lahoti, M., vd. (2024). Preparation of Calcite-Precipitating Bacteria-Embedded Magnesium Phosphate Cement for Self-Healing Application. Journal of Sustainable Construction Materials and Technologies, 9(1), 1-10. https://doi.org/10.47481/jscmt.1404010

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr