İnceleme Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 1 Sayı: 2, 70 - 88, 10.11.2022
https://doi.org/10.55971/EJLS.1181158

Öz

Kaynakça

  • 1. Curry EJ, Henoun AD, Miller AN 3rd, Nguyen TD. 3D nano- and micro-patterning of biomaterials for controlled drug delivery. Ther Deliv. 2017;8(1):15-28. https://doi.org/10.4155/tde-2016-0052
  • 2. Lavan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21(10):1184-1191. https://doi.org/10.1038/nbt876
  • 3. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115-124. https://doi.org/10.1038/nrd1304
  • 4. Kaynak MS, Kaş HS, Levent Ö. Formulation of controlled release glipizide pellets using pan coating method. Hacettepe University Journal of the Faculty of Pharmacy. 2007;27(2):93-106.
  • 5. Langer R. New methods of drug delivery. Science. 1990;249(4976):1527-1533. https://doi.org/10.1126/science.2218494
  • 6. Liversidge GG, Cundy KC, Bishop JF, Czekai DA, inventors; Particulate Prospects Corp, Elan Corp PLC, Elan Pharma International Ltd, assignee. Surface modified drug nanoparticles. United States patent DC 5,145,684. 1992.
  • 7. Fang C, Bhattarai N, Sun C, Zhang M. Functionalized nanoparticles with long-term stability in biological media. Small. 2009;5(14):1637-1641. https://doi.org/10.1002/smll.200801647
  • 8. Kholgh Eshkalak S, Rezvani Ghomi E, Dai Y, Choudhury D, Ramakrishna S. The role of three-dimensional printing in healthcare and medicine. Materials & Design. 2020;194:108940. https://doi.org/10.1016/j.matdes.2020.108940
  • 9. Basgul C, Yu T, MacDonald DW, Siskey R, Marcolongo M, Kurtz SM. Structure-Property Relationships for 3D printed PEEK Intervertebral Lumbar Cages Produced using Fused Filament Fabrication. J Mater Res. 2018;33(14):2040-2051. https://doi.org/10.1557/jmr.2018.178
  • 10. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev. 2017;117(15):10212-10290. https://doi.org/10.1021/acs.chemrev.7b00074
  • 11. Kjar A, Huang Y. Application of Micro-Scale 3D Printing in Pharmaceutics. Pharmaceutics. 2019;11(8):390. https://doi.org/10.3390/pharmaceutics11080390
  • 12. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018;143:172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • 13. Dizon JRC, Espera AH Jr, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Additive Manufacturing. 2018;20:44-67. https://doi.org/10.1016/j.addma.2017.12.002
  • 14. Honigmann P, Sharma N, Okolo B, Popp U, Msallem B, Thieringer FM. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. Biomed Res Int. 2018;2018:4520636. https://doi.org/10.1155/2018/4520636
  • 15. Goyanes A, Wang J, Buanz A, et al. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Mol Pharm. 2015;12(11):4077-4084. https://doi.org/10.1021/acs.molpharmaceut.5b00510
  • 16. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156(2):179-185. https://doi.org/10.1016/j.jconrel.2011.07.033
  • 17. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11-17. https://doi.org/10.1016/j.ejps.2014.11.009
  • 18. Tutton R. Personalizing medicine: futures present and past. Soc Sci Med. 2012;75(10):1721-1728. https://doi.org/10.1016/j.socscimed.2012.07.031
  • 19. Sen K, Manchanda A, Mehta T, Ma AWK, Chaudhuri B. Formulation design for inkjet-based 3D printed tablets. Int J Pharm. 2020;584:119430. https://doi.org/10.1016/j.ijpharm.2020.119430
  • 20. Infanger S, Haemmerli A, Iliev S, Baier A, Stoyanov E, Quodbach J. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. Int J Pharm. 2019;555:198-206. https://doi.org/10.1016/j.ijpharm.2018.11.048
  • 21. Khan FA, Narasimhan K, Swathi CSV, et al. 3D Printing Technology in Customized Drug Delivery System: Current State of the Art, Prospective and the Challenges. Curr Pharm Des. 2018;24(42):5049-5061. https://doi.org/10.2174/1381612825666190110153742
  • 22. Jamroz W, Kurek M, Lyszczarz E, Brniak W, Jachowicz R. Printing techniques: recent developments in pharmaceutical technology. Acta Pol Pharm. 2017;74(3):753-763.
  • 23. Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev. 2018;132:139-168. https://doi.org/10.1016/j.addr.2018.05.006
  • 24. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
  • 25. Devi L, Gaba P, Chopra H. Tailormade Drug Delivery System: A Novel Trio Concept of 3DP+ Hydrogel+ SLA. J Drug Delivery Ther. 2019;9(4-s):861-866. https://doi.org/10.22270/jddt.v9i4-s.3458
  • 26. Zhou T, Zhang L, Yao Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications. Ceramics International. 2020;46(6):7609-7614. https://doi.org/10.1016/j.ceramint.2019.11.261
  • 27. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital Light Processing Based Three-dimensional Printing for Medical Applications. Int J Bioprint. 2019;6(1):242. https://doi.org/10.18063/ijb.v6i1.242
  • 28. Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 2018;74:90-111. https://doi.org/10.1016/j.actbio.2018.05.010
  • 29. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349-1352. https://doi.org/10.1126/science.aaa2397
  • 30. Whitehead J, Lipson H. Inverted multi-material laser sintering. Additive Manufacturing. 2020;36:101440. https://doi.org/10.1016/j.addma.2020.101440
  • 31. Anderson I. Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Printing and Additive Manufacturing. 2017;4(2):110-115. https://doi.org/10.1089/3dp.2016.0054
  • 32. Bakshi KR, Mulay AV. A review on selective laser sintering: a rapid prototyping technology. IOSR. 2016;04(04):53-57. https://doi.org/10.9790/1684-15008040453-57
  • 33. Kumar S. Selective laser sintering: a qualitative and objective approach. JOM. 2003;55(10):43-47. https://doi.org/10.1007/s11837-003-0175-y
  • 34. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct selective laser sintering of metals. Rapid Prototyping Journal. 1995;1(1):26-36. https://doi.org/10.1108/13552549510078113
  • 35. Kruth JP, Wang X, Laoui T, Froyen L. Lasers and materials in selective laser sintering. Assembly Automation. 2003;23(4):357-371. https://doi.org/10.1108/01445150310698652
  • 36. Haryńska A, Kucinska-Lipka J, Sulowska A, Gubanska I, Kostrzewa M, Janik H. Medical-Grade PCL Based Polyurethane System for FDM 3D Printing-Characterization and Fabrication. Materials (Basel). 2019;12(6):887. https://doi.org/10.3390/ma12060887
  • 37. Gnanasekaran K, Heijmans T, van Bennekom S, et al. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today. 2017;9:21-28. https://doi.org/10.1016/j.apmt.2017.04.003
  • 38. Sood AK, Ohdar RK, Mahapatra SS. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design. 2010;31(1):287-295. https://doi.org/10.1016/j.matdes.2009.06.016
  • 39. Panraksa P, Udomsom S, Rachtanapun P, Chittasupho C, Ruksiriwanich W, Jantrawut P. Hydroxypropyl Methylcellulose E15: A Hydrophilic Polymer for Fabrication of Orodispersible Film Using Syringe Extrusion 3D Printer. Polymers (Basel). 2020;12(11):2666. https://doi.org/10.3390/polym12112666
  • 40. Loh GH, Pei E, Harrison D, Monzón MD. An overview of functionally graded additive manufacturing. Additive Manufacturing. 2018;23:34-44. https://doi.org/10.1016/j.addma.2018.06.023
  • 41. Salcedo E, Baek D, Berndt A, Ryu JE. Simulation and validation of three dimension functionally graded materials by material jetting. Additive Manufacturing. 2018;22:351-359. https://doi.org/10.1016/j.addma.2018.05.027
  • 42. Tee YL, Tran P, Leary M, Pille P, Brandt M. 3D Printing of polymer composites with material jetting: Mechanical and fractographic analysis. Additive Manufacturing. 2020;36:101558. https://doi.org/10.1016/j.addma.2020.101558
  • 43. Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019-1031. https://doi.org/10.3109/03639045.2015.1120743
  • 44. Reis N, Ainsley C, Derby B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. Journal of Applied Physics. 2005;97(9):094903. https://doi.org/10.1063/1.1888026
  • 45. Bai Y, Wagner G, Williams CB. Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering. 2017;139(8). https://doi.org/10.1115/1.4036640
  • 46. Wilts EM, Long TE. Thiol-ene addition enables tailored synthesis of poly(2-oxazoline)-graft-poly(vinyl pyrrolidone) copolymers for binder jetting 3D printing. Polym Int. 2020;69(10):902-911. https://doi.org/10.1002/pi.6074
  • 47. Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121(1-2):3-9. https://doi.org/10.1016/j.jconrel.2007.03.022
  • 48. Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences. 2014;9(6):304-316. https://doi.org/10.1016/j.ajps.2014.05.005
  • 49. Sun J, Wang F, Sui Y, et al. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q₁₀ as naked nanocrystals. Int J Nanomedicine. 2012;7:5733-5744. https://doi.org/10.2147/IJN.S34365
  • 50. Junghanns J-UAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295-309. https://doi.org/10.2147/ijn.s595
  • 51. Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315-499. https://doi.org/10.1124/pr.112.005660
  • 52. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104-120. https://doi.org/10.1016/j.addr.2012.10.003
  • 53. Bajpai SK, Kirar N. Swelling and drug release behavior of calcium alginate/poly (sodium acrylate) hydrogel beads. Designed Monomers and Polymers. 2015;19(1):89-98. https://doi.org/10.1080/15685551.2015.1092016
  • 54. Bhasarkar J, Bal D. Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids. J Appl Biomater Funct Mater. 2019;17(2):2280800018817462. https://doi.org/10.1177/2280800018817462
  • 55. Wong BS, Teoh S-H, Kang L. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Deliv Transl Res. 2012;2(4):272-283. https://doi.org/10.1007/s13346-012-0096-9
  • 56. Cader HK, Rance GA, Alexander MR, et al. Water-based 3D inkjet printing of an oral pharmaceutical dosage form. Int J Pharm. 2019;564:359-368. https://doi.org/10.1016/j.ijpharm.2019.04.026
  • 57. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1-2):207-212. https://doi.org/10.1016/j.ijpharm.2016.03.016
  • 58. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308-314. https://doi.org/10.1016/j.jconrel.2015.09.028
  • 59. Clark EA, Alexander MR, Irvine DJ, et al. 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm. 2017;529(1-2):523-530. https://doi.org/10.1016/j.ijpharm.2017.06.085
  • 60. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101-107. https://doi.org/10.1016/j.ijpharm.2018.02.015
  • 61. Solanki NG, Tahsin M, Shah AV, Serajuddin ATM. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability. J Pharm Sci. 2018;107(1):390-401. https://doi.org/10.1016/j.xphs.2017.10.021
  • 62. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657-663. https://doi.org/10.1016/j.ijpharm.2015.04.069
  • 63. Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355-363. https://doi.org/10.1016/j.jconrel.2017.11.022
  • 64. Wickström H, Palo M, Rijckaert K, et al. Improvement of dissolution rate of indomethacin by inkjet printing. Eur J Pharm Sci. 2015;75:91-100. https://doi.org/10.1016/j.ejps.2015.03.009
  • 65. Pardeike J, Strohmeier DM, Schrödl N, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93-100. https://doi.org/10.1016/j.ijpharm.2011.08.033
  • 66. Cheow WS, Kiew TY, Hadinoto K. Combining inkjet printing and amorphous nanonization to prepare personalized dosage forms of poorly-soluble drugs. Eur J Pharm Biopharm. 2015;96:314-321. https://doi.org/10.1016/j.ejpb.2015.08.012
  • 67. Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ. Multimechanism oral dosage forms fabricated by three dimensional printing™. Journal of Controlled Release. 2000;66(1):11-17. https://doi.org/10.1016/s0168-3659(99)00224-2
  • 68. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1-2):105-111. https://doi.org/10.1016/j.ijpharm.2013.11.021
  • 69. Jivraj I I, Martini LG, Thomson CM. An overview of the different excipients useful for the direct compression of tablets. Pharm Sci Technol Today. 2000;3(2):58-63. https://doi.org/10.1016/s1461-5347(99)00237-0
  • 70. Sastry SV, Nyshadham JR, Fix JA. Recent technological advances in oral drug delivery - a review. Pharm Sci Technol Today. 2000;3(4):138-145. https://doi.org/10.1016/s1461-5347(00)00247-9
  • 71. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643-650. https://doi.org/10.1016/j.ijpharm.2015.07.067
  • 72. Ilyés K, Kovács NK, Balogh A, et al. The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: Material considerations-printability-process modulation, with consecutive effects on in vitro release, stability and degradation. Eur J Pharm Sci. 2019;129:110-123. https://doi.org/10.1016/j.ejps.2018.12.019
  • 73. Matijašić G, Gretić M, Kezerić K, Petanjek J, Vukelić E. Preparation of Filaments and the 3D Printing of Dronedarone HCl Tablets for Treating Cardiac Arrhythmias. AAPS PharmSciTech. 2019;20(8):310. https://doi.org/10.1208/s12249-019-1522-9
  • 74. Fina F, Goyanes A, Rowland M, Gaisford S, W Basit A. 3D Printing of Tunable Zero-Order Release Printlets. Polymers (Basel). 2020;12(8):1769. https://doi.org/10.3390/polym12081769
  • 75. Saviano M, Aquino RP, Del Gaudio P, Sansone F, Russo P. Poly(vinyl alcohol) 3D printed tablets: The effect of polymer particle size on drug loading and process efficiency. Int J Pharm. 2019;561:1-8. https://doi.org/10.1016/j.ijpharm.2019.02.025
  • 76. Li Q, Wen H, Jia D, et al. Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing. Int J Pharm. 2017;525(1):5-11. https://doi.org/10.1016/j.ijpharm.2017.03.066
  • 77. Linares V, Casas M, Caraballo I. Printfills: 3D printed systems combining fused deposition modeling and injection volume filling. Application to colon-specific drug delivery. Eur J Pharm Biopharm. 2019;134:138-143. https://doi.org/10.1016/j.ejpb.2018.11.021
  • 78. Clark EA, Alexander MR, Irvine DJ, et al. Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. Int J Pharm. 2020;578:118805. https://doi.org/10.1016/j.ijpharm.2019.118805
  • 79. Kempin W, Domsta V, Grathoff G, et al. Immediate Release 3D-Printed Tablets Produced Via Fused Deposition Modeling of a Thermo-Sensitive Drug. Pharm Res. 2018;35(6):124. https://doi.org/10.1007/s11095-018-2405-6
  • 80. Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1-2):144-152. https://doi.org/10.1016/j.ijpharm.2018.04.055
  • 81. Jamróz W, Kurek M, Szafraniec-Szczęsny J, et al. Speed it up, slow it down…An issue of bicalutamide release from 3D printed tablets. Eur J Pharm Sci. 2020;143:105169. https://doi.org/10.1016/j.ejps.2019.105169
  • 82. Luongo F, Mangano FG, Macchi A, Luongo G, Mangano C. Custom-Made Synthetic Scaffolds for Bone Reconstruction: A Retrospective, Multicenter Clinical Study on 15 Patients. Biomed Res Int. 2016;2016:5862586. https://doi.org/10.1155/2016/5862586
  • 83. Varan C, Wickström H, Sandler N, Aktaş Y, Bilensoy E. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int J Pharm. 2017;531(2):701-713. https://doi.org/10.1016/j.ijpharm.2017.04.036
  • 83. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1-2):161-170. https://doi.org/10.1016/j.ijpharm.2017.04.077
  • 85. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539(1-2):75-82. https://doi.org/10.1016/j.ijpharm.2018.01.036
  • 86. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41-48. https://doi.org/10.1016/j.jconrel.2016.05.034
  • 87. Lee K-J, Kang A, Delfino JJ, et al. Evaluation of critical formulation factors in the development of a rapidly dispersing captopril oral dosage form. Drug Dev Ind Pharm. 2003;29(9):967-979. https://doi.org/10.1081/ddc-120025454
  • 88. Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425-432. https://doi.org/10.1016/j.ijpharm.2018.03.031
  • 89. Algahtani MS, Mohammed AA, Ahmad J, Saleh E. Development of a 3D Printed Coating Shell to Control the Drug Release of Encapsulated Immediate-Release Tablets. Polymers (Basel). 2020;12(6):1395. https://doi.org/10.3390/polym12061395
  • 90. Pereira T, Kennedy JV, Potgieter J. A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manufacturing. 2019;30:11-18. https://doi.org/10.1016/j.promfg.2019.02.003
  • 91. Park JY, Kim HY, Kim JH, Kim JH, Kim WC. Comparison of prosthetic models produced by traditional and additive manufacturing methods. J Adv Prosthodont. 2015;7(4):294-302. https://doi.org/10.4047/jap.2015.7.4.294
  • 92. Sinha SK. Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing. 3D and 4D Printing of Polymer Nanocomposite Materials, Elsevier; 2020. p. 119-160. https://doi.org/10.1016/b978-0-12-816805-9.00005-3
  • 93. Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue. 2017;94:178-191. https://doi.org/10.1016/j.ijfatigue.2016.06.020
  • 94. Goyanes A, Buanz ABM, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157-162. https://doi.org/10.1016/j.ejpb.2014.12.003
  • 95. Yi H-G, Choi Y-J, Kang KS, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231-241. https://doi.org/10.1016/j.jconrel.2016.06.015
  • 96. Karakurt I, Aydoğdu A, Çıkrıkcı S, Orozco J, Lin L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study. Int J Pharm. 2020;584:119428. https://doi.org/10.1016/j.ijpharm.2020.119428
  • 97. Healy AV, Fuenmayor E, Doran P, Geever LM, Higginbotham CL, Lyons JG. Additive Manufacturing of Personalized Pharmaceutical Dosage Forms via Stereolithography. Pharmaceutics. 2019;11(12):645. https://doi.org/10.3390/pharmaceutics11120645
  • 98. Goyanes A, Chang H, Sedough D, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414-420. https://doi.org/10.1016/j.ijpharm.2015.10.039
  • 99. Tagami T, Nagata N, Hayashi N, et al. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler. Int J Pharm. 2018;543(1-2):361-367. https://doi.org/10.1016/j.ijpharm.2018.03.057
  • 100. Lim SH, Chia SMY, Kang L, Yap KY-L. Three-Dimensional Printing of Carbamazepine Sustained-Release Scaffold. J Pharm Sci. 2016;105(7):2155-2163. https://doi.org/10.1016/j.xphs.2016.04.031
  • 101. Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T. Fabrication of Muco-Adhesive Oral Films by the 3D Printing of Hydroxypropyl Methylcellulose-Based Catechin-Loaded Formulations. Biol Pharm Bull. 2019;42(11):1898-1905. https://doi.org/10.1248/bpb.b19-00481
  • 102. Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T. 3D Printing Factors Important for the Fabrication of Polyvinylalcohol Filament-Based Tablets. Biol Pharm Bull. 2017;40(3):357-364. https://doi.org/10.1248/bpb.b16-00878
  • 103. Beck RCR, Chaves PS, Goyanes A, et al. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528(1-2):268-279. https://doi.org/10.1016/j.ijpharm.2017.05.074
  • 104. Costa PF, Puga AM, Díaz-Gomez L, Concheiro A, Busch DH, Alvarez-Lorenzo C. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Int J Pharm. 2015;496(2):541-550. https://doi.org/10.1016/j.ijpharm.2015.10.055
  • 105. Rattanakit P, Moulton SE, Santiago KS, Liawruangrath S, Wallace GG. Extrusion printed polymer structures: a facile and versatile approach to tailored drug delivery platforms. Int J Pharm. 2012;422(1-2):254-263. https://doi.org/10.1016/j.ijpharm.2011.11.007
  • 106. Li Q, Guan X, Cui M, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1-2):325-332. https://doi.org/10.1016/j.ijpharm.2017.10.037
  • 107. Tagami T, Ito E, Hayashi N, Sakai N, Ozeki T. Application of 3D printing technology for generating hollow-type suppository shells. Int J Pharm. 2020;589:119825. https://doi.org/10.1016/j.ijpharm.2020.119825
  • 108. Siyawamwaya M, du Toit LC, Kumar P, Choonara YE, Kondiah PPPD, Pillay V. 3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery. Eur J Pharm Biopharm. 2019;138:99-110. https://doi.org/10.1016/j.ejpb.2018.04.007
  • 109. Kyobula M, Adedeji A, Alexander MR, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release. 2017;261:207-215. https://doi.org/10.1016/j.jconrel.2017.06.025
  • 110. Kao CT, Chen YJ, Huang TH, Lin YH, Hsu TT, Ho CC. Assessment of the Release Profile of Fibroblast Growth Factor-2-Load Mesoporous Calcium Silicate/Poly-ε-caprolactone 3D Scaffold for Regulate Bone Regeneration. Processes. 2020;8(10):1249. https://doi.org/10.3390/pr8101249
  • 111. Goyanes A, Buanz ABM, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1-2):88-92. https://doi.org/10.1016/j.ijpharm.2014.09.044
  • 112. Weisman JA, Ballard DH, Jammalamadaka U, et al. 3D Printed Antibiotic and Chemotherapeutic Eluting Catheters for Potential Use in Interventional Radiology: In Vitro Proof of Concept Study. Acad Radiol. 2019;26(2):270-274. https://doi.org/10.1016/j.acra.2018.03.022
  • 113. Wen H, He B, Wang H, et al. Structure-Based Gastro-Retentive and Controlled-Release Drug Delivery with Novel 3D Printing. AAPS PharmSciTech. 2019;20(2):68. https://doi.org/10.1208/s12249-018-1237-3
  • 114. Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, et al. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci. 2018;120:40-52. https://doi.org/10.1016/j.ejps.2018.04.020
  • 115. Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313-317. https://doi.org/10.1016/j.ijpharm.2017.09.003
  • 116. Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The Application of 3D Printing in the Formulation of Multilayered Fast Dissolving Oral Films. J Pharm Sci. 2018;107(4):1076-1085. https://doi.org/10.1016/j.xphs.2017.11.019
  • 117. Scoutaris N, Ross SA, Douroumis D. 3D Printed “Starmix” Drug Loaded Dosage Forms for Paediatric Applications. Pharm Res. 2018;35(2):34. https://doi.org/10.1007/s11095-017-2284-2
  • 118. Holländer J, Genina N, Jukarainen H, et al. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. J Pharm Sci. 2016;105(9):2665-2676. https://doi.org/10.1016/j.xphs.2015.12.012
  • 119. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53-63. https://doi.org/10.1016/j.ejps.2015.11.005
  • 120. Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J Control Release. 2017;268:40-48. https://doi.org/10.1016/j.jconrel.2017.10.003
  • 121. Smith D, Kapoor Y, Hermans A, et al. 3D printed capsules for quantitative regional absorption studies in the GI tract. Int J Pharm. 2018;550(1-2):418-428. https://doi.org/10.1016/j.ijpharm.2018.08.055
  • 122. Huang W, Zheng Q, Sun W, Xu H, Yang X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1-2):33-38. https://doi.org/10.1016/j.ijpharm.2007.02.021
  • 123. García-Alvarez R, Izquierdo-Barba I, Vallet-Regí M. 3D scaffold with effective multidrug sequential release against bacteria biofilm. Acta Biomater. 2017;49:113-126. https://doi.org/10.1016/j.actbio.2016.11.028
  • 124. Ibrahim M, Barnes M, McMillin R, et al. 3D Printing of Metformin HCl PVA Tablets by Fused Deposition Modeling: Drug Loading, Tablet Design, and Dissolution Studies. AAPS PharmSciTech. 2019;20(5):195. https://doi.org/10.1208/s12249-019-1400-5
  • 125. Smith DM, Kapoor Y, Klinzing GR, Procopio AT. Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule. Int J Pharm. 2018;544(1):21-30. https://doi.org/10.1016/j.ijpharm.2018.03.056
  • 126. Huanbutta K, Sangnim T. Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology. Journal of Drug Delivery Science and Technology. 2019;52:831-837. https://doi.org/10.1016/j.jddst.2019.06.004
  • 127. Water JJ, Bohr A, Boetker J, et al. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci. 2015;104(3):1099-1107. https://doi.org/10.1002/jps.24305
  • 128. Gbureck U, Vorndran E, Müller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007;122(2):173-180. https://doi.org/10.1016/j.jconrel.2007.06.022
  • 129. Zhang J, Yang W, Vo AQ, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr Polym. 2017;177:49-57. https://doi.org/10.1016/j.carbpol.2017.08.058
  • 130. Zhang J, Feng X, Patil H, Tiwari RV, Repka MA. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1-2):186-197. https://doi.org/10.1016/j.ijpharm.2016.12.049
  • 131. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1-2):21-30. https://doi.org/10.1016/j.ijpharm.2017.05.021
  • 132. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285-293. https://doi.org/10.1016/j.ijpharm.2017.06.082
  • 133. Holländer J, Hakala R, Suominen J, Moritz N, Yliruusi J, Sandler N. 3D printed UV light cured polydimethylsiloxane devices for drug delivery. Int J Pharm. 2018;544(2):433-442. https://doi.org/10.1016/j.ijpharm.2017.11.016
  • 134. Long J, Nand AV, Ray S, et al. Development of customised 3D printed biodegradable projectile for administrating extended-release contraceptive to wildlife. Int J Pharm. 2018;548(1):349-356. https://doi.org/10.1016/j.ijpharm.2018.07.002
  • 135. Vakili H, Nyman JO, Genina N, Preis M, Sandler N. Application of a colorimetric technique in quality control for printed pediatric orodispersible drug delivery systems containing propranolol hydrochloride. Int J Pharm. 2016;511(1):606-618. https://doi.org/10.1016/j.ijpharm.2016.07.032
  • 136. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3 Pt B):1075-1083. https://doi.org/10.1016/j.ejpb.2013.03.017
  • 137. Wu G, Huang F, Huang Y, et al. Bone inductivity comparison of control versus non-control released rhBMP2 coatings in 3D printed hydroxyapatite scaffold. J Biomater Appl. 2020;34(9):1254-1266. https://doi.org/10.1177/0885328220903962
  • 138. Fu J, Yin H, Yu X, et al. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm. 2018;549(1-2):370-379. https://doi.org/10.1016/j.ijpharm.2018.08.011
  • 139. Bom S, Santos C, Barros R, et al. Effects of Starch Incorporation on the Physicochemical Properties and Release Kinetics of Alginate-Based 3D Hydrogel Patches for Topical Delivery. Pharmaceutics. 2020;12(8):719. https://doi.org/10.3390/pharmaceutics12080719
  • 140. Cheng Y, Qin H, Acevedo NC, Jiang X, Shi X. 3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels. Int J Pharm. 2020;591:119983. https://doi.org/10.1016/j.ijpharm.2020.119983
  • 141. Sergeeva NS, Sviridova IK, Komlev VS, et al. 3D printed constructs with antibacterial or antitumor activity for surgical treatment of bone defects in cancer patients. AIP Conference Proceedings. AIP Publishing LLC; 2017, p. 020063. https://doi.org/10.1063/1.5001642
  • 142. Arafat B, Qinna N, Cieszynska M, Forbes RT, Alhnan MA. Tailored on demand anti-coagulant dosing: An in vitro and in vivo evaluation of 3D printed purpose-designed oral dosage forms. Eur J Pharm Biopharm. 2018;128:282-289. https://doi.org/10.1016/j.ejpb.2018.04.010

Release kinetics of 3D printed oral solid dosage forms: An overview

Yıl 2022, Cilt: 1 Sayı: 2, 70 - 88, 10.11.2022
https://doi.org/10.55971/EJLS.1181158

Öz

Three-dimensional printing (3DP) is one of the most extensively researched methods for producing nano/micro scale biomaterials. This method is typically applied layer by layer. The 3DP method has many advantages over traditional manufacturing methods and ensures that personalized drug design is feasible. Individual dose adjustment provides significant benefits, particularly in some disadvantaged patient groups. Individual release characteristics may be required in these patient groups in addition to dose adjustment. 3DP technology also allows for the adjustment of release kinetics. All of these factors were also increasing interest in 3DP technology in the pharmaceutical industry. The goal of this review is to understand the pharmacological significance of 3DP technology as well as the parameters influencing the release profiles in tablets produced by using technique, and to establish a correlation between them. Within the scope of this review, 79 literature research studies were examined, and it was determined that there is limited data to determine whether there is a correlation between release kinetics and 3DP techniques. When the release profiles obtained by considering the polymer type used in these techniques are evaluated, immediate and rapid release was obtained in studies using PVA + PLA polymers and studies using PVP polymer, immediate release in studies using Kollidon® and Kollicoat® derivatives, and controlled, extended and sustained release was observed in studies using PCL polymer.

Kaynakça

  • 1. Curry EJ, Henoun AD, Miller AN 3rd, Nguyen TD. 3D nano- and micro-patterning of biomaterials for controlled drug delivery. Ther Deliv. 2017;8(1):15-28. https://doi.org/10.4155/tde-2016-0052
  • 2. Lavan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21(10):1184-1191. https://doi.org/10.1038/nbt876
  • 3. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115-124. https://doi.org/10.1038/nrd1304
  • 4. Kaynak MS, Kaş HS, Levent Ö. Formulation of controlled release glipizide pellets using pan coating method. Hacettepe University Journal of the Faculty of Pharmacy. 2007;27(2):93-106.
  • 5. Langer R. New methods of drug delivery. Science. 1990;249(4976):1527-1533. https://doi.org/10.1126/science.2218494
  • 6. Liversidge GG, Cundy KC, Bishop JF, Czekai DA, inventors; Particulate Prospects Corp, Elan Corp PLC, Elan Pharma International Ltd, assignee. Surface modified drug nanoparticles. United States patent DC 5,145,684. 1992.
  • 7. Fang C, Bhattarai N, Sun C, Zhang M. Functionalized nanoparticles with long-term stability in biological media. Small. 2009;5(14):1637-1641. https://doi.org/10.1002/smll.200801647
  • 8. Kholgh Eshkalak S, Rezvani Ghomi E, Dai Y, Choudhury D, Ramakrishna S. The role of three-dimensional printing in healthcare and medicine. Materials & Design. 2020;194:108940. https://doi.org/10.1016/j.matdes.2020.108940
  • 9. Basgul C, Yu T, MacDonald DW, Siskey R, Marcolongo M, Kurtz SM. Structure-Property Relationships for 3D printed PEEK Intervertebral Lumbar Cages Produced using Fused Filament Fabrication. J Mater Res. 2018;33(14):2040-2051. https://doi.org/10.1557/jmr.2018.178
  • 10. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev. 2017;117(15):10212-10290. https://doi.org/10.1021/acs.chemrev.7b00074
  • 11. Kjar A, Huang Y. Application of Micro-Scale 3D Printing in Pharmaceutics. Pharmaceutics. 2019;11(8):390. https://doi.org/10.3390/pharmaceutics11080390
  • 12. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018;143:172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • 13. Dizon JRC, Espera AH Jr, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Additive Manufacturing. 2018;20:44-67. https://doi.org/10.1016/j.addma.2017.12.002
  • 14. Honigmann P, Sharma N, Okolo B, Popp U, Msallem B, Thieringer FM. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. Biomed Res Int. 2018;2018:4520636. https://doi.org/10.1155/2018/4520636
  • 15. Goyanes A, Wang J, Buanz A, et al. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Mol Pharm. 2015;12(11):4077-4084. https://doi.org/10.1021/acs.molpharmaceut.5b00510
  • 16. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156(2):179-185. https://doi.org/10.1016/j.jconrel.2011.07.033
  • 17. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11-17. https://doi.org/10.1016/j.ejps.2014.11.009
  • 18. Tutton R. Personalizing medicine: futures present and past. Soc Sci Med. 2012;75(10):1721-1728. https://doi.org/10.1016/j.socscimed.2012.07.031
  • 19. Sen K, Manchanda A, Mehta T, Ma AWK, Chaudhuri B. Formulation design for inkjet-based 3D printed tablets. Int J Pharm. 2020;584:119430. https://doi.org/10.1016/j.ijpharm.2020.119430
  • 20. Infanger S, Haemmerli A, Iliev S, Baier A, Stoyanov E, Quodbach J. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. Int J Pharm. 2019;555:198-206. https://doi.org/10.1016/j.ijpharm.2018.11.048
  • 21. Khan FA, Narasimhan K, Swathi CSV, et al. 3D Printing Technology in Customized Drug Delivery System: Current State of the Art, Prospective and the Challenges. Curr Pharm Des. 2018;24(42):5049-5061. https://doi.org/10.2174/1381612825666190110153742
  • 22. Jamroz W, Kurek M, Lyszczarz E, Brniak W, Jachowicz R. Printing techniques: recent developments in pharmaceutical technology. Acta Pol Pharm. 2017;74(3):753-763.
  • 23. Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev. 2018;132:139-168. https://doi.org/10.1016/j.addr.2018.05.006
  • 24. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
  • 25. Devi L, Gaba P, Chopra H. Tailormade Drug Delivery System: A Novel Trio Concept of 3DP+ Hydrogel+ SLA. J Drug Delivery Ther. 2019;9(4-s):861-866. https://doi.org/10.22270/jddt.v9i4-s.3458
  • 26. Zhou T, Zhang L, Yao Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications. Ceramics International. 2020;46(6):7609-7614. https://doi.org/10.1016/j.ceramint.2019.11.261
  • 27. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital Light Processing Based Three-dimensional Printing for Medical Applications. Int J Bioprint. 2019;6(1):242. https://doi.org/10.18063/ijb.v6i1.242
  • 28. Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 2018;74:90-111. https://doi.org/10.1016/j.actbio.2018.05.010
  • 29. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349-1352. https://doi.org/10.1126/science.aaa2397
  • 30. Whitehead J, Lipson H. Inverted multi-material laser sintering. Additive Manufacturing. 2020;36:101440. https://doi.org/10.1016/j.addma.2020.101440
  • 31. Anderson I. Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Printing and Additive Manufacturing. 2017;4(2):110-115. https://doi.org/10.1089/3dp.2016.0054
  • 32. Bakshi KR, Mulay AV. A review on selective laser sintering: a rapid prototyping technology. IOSR. 2016;04(04):53-57. https://doi.org/10.9790/1684-15008040453-57
  • 33. Kumar S. Selective laser sintering: a qualitative and objective approach. JOM. 2003;55(10):43-47. https://doi.org/10.1007/s11837-003-0175-y
  • 34. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct selective laser sintering of metals. Rapid Prototyping Journal. 1995;1(1):26-36. https://doi.org/10.1108/13552549510078113
  • 35. Kruth JP, Wang X, Laoui T, Froyen L. Lasers and materials in selective laser sintering. Assembly Automation. 2003;23(4):357-371. https://doi.org/10.1108/01445150310698652
  • 36. Haryńska A, Kucinska-Lipka J, Sulowska A, Gubanska I, Kostrzewa M, Janik H. Medical-Grade PCL Based Polyurethane System for FDM 3D Printing-Characterization and Fabrication. Materials (Basel). 2019;12(6):887. https://doi.org/10.3390/ma12060887
  • 37. Gnanasekaran K, Heijmans T, van Bennekom S, et al. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today. 2017;9:21-28. https://doi.org/10.1016/j.apmt.2017.04.003
  • 38. Sood AK, Ohdar RK, Mahapatra SS. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design. 2010;31(1):287-295. https://doi.org/10.1016/j.matdes.2009.06.016
  • 39. Panraksa P, Udomsom S, Rachtanapun P, Chittasupho C, Ruksiriwanich W, Jantrawut P. Hydroxypropyl Methylcellulose E15: A Hydrophilic Polymer for Fabrication of Orodispersible Film Using Syringe Extrusion 3D Printer. Polymers (Basel). 2020;12(11):2666. https://doi.org/10.3390/polym12112666
  • 40. Loh GH, Pei E, Harrison D, Monzón MD. An overview of functionally graded additive manufacturing. Additive Manufacturing. 2018;23:34-44. https://doi.org/10.1016/j.addma.2018.06.023
  • 41. Salcedo E, Baek D, Berndt A, Ryu JE. Simulation and validation of three dimension functionally graded materials by material jetting. Additive Manufacturing. 2018;22:351-359. https://doi.org/10.1016/j.addma.2018.05.027
  • 42. Tee YL, Tran P, Leary M, Pille P, Brandt M. 3D Printing of polymer composites with material jetting: Mechanical and fractographic analysis. Additive Manufacturing. 2020;36:101558. https://doi.org/10.1016/j.addma.2020.101558
  • 43. Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019-1031. https://doi.org/10.3109/03639045.2015.1120743
  • 44. Reis N, Ainsley C, Derby B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. Journal of Applied Physics. 2005;97(9):094903. https://doi.org/10.1063/1.1888026
  • 45. Bai Y, Wagner G, Williams CB. Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering. 2017;139(8). https://doi.org/10.1115/1.4036640
  • 46. Wilts EM, Long TE. Thiol-ene addition enables tailored synthesis of poly(2-oxazoline)-graft-poly(vinyl pyrrolidone) copolymers for binder jetting 3D printing. Polym Int. 2020;69(10):902-911. https://doi.org/10.1002/pi.6074
  • 47. Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121(1-2):3-9. https://doi.org/10.1016/j.jconrel.2007.03.022
  • 48. Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences. 2014;9(6):304-316. https://doi.org/10.1016/j.ajps.2014.05.005
  • 49. Sun J, Wang F, Sui Y, et al. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q₁₀ as naked nanocrystals. Int J Nanomedicine. 2012;7:5733-5744. https://doi.org/10.2147/IJN.S34365
  • 50. Junghanns J-UAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295-309. https://doi.org/10.2147/ijn.s595
  • 51. Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315-499. https://doi.org/10.1124/pr.112.005660
  • 52. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104-120. https://doi.org/10.1016/j.addr.2012.10.003
  • 53. Bajpai SK, Kirar N. Swelling and drug release behavior of calcium alginate/poly (sodium acrylate) hydrogel beads. Designed Monomers and Polymers. 2015;19(1):89-98. https://doi.org/10.1080/15685551.2015.1092016
  • 54. Bhasarkar J, Bal D. Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids. J Appl Biomater Funct Mater. 2019;17(2):2280800018817462. https://doi.org/10.1177/2280800018817462
  • 55. Wong BS, Teoh S-H, Kang L. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Deliv Transl Res. 2012;2(4):272-283. https://doi.org/10.1007/s13346-012-0096-9
  • 56. Cader HK, Rance GA, Alexander MR, et al. Water-based 3D inkjet printing of an oral pharmaceutical dosage form. Int J Pharm. 2019;564:359-368. https://doi.org/10.1016/j.ijpharm.2019.04.026
  • 57. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1-2):207-212. https://doi.org/10.1016/j.ijpharm.2016.03.016
  • 58. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308-314. https://doi.org/10.1016/j.jconrel.2015.09.028
  • 59. Clark EA, Alexander MR, Irvine DJ, et al. 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm. 2017;529(1-2):523-530. https://doi.org/10.1016/j.ijpharm.2017.06.085
  • 60. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101-107. https://doi.org/10.1016/j.ijpharm.2018.02.015
  • 61. Solanki NG, Tahsin M, Shah AV, Serajuddin ATM. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability. J Pharm Sci. 2018;107(1):390-401. https://doi.org/10.1016/j.xphs.2017.10.021
  • 62. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657-663. https://doi.org/10.1016/j.ijpharm.2015.04.069
  • 63. Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355-363. https://doi.org/10.1016/j.jconrel.2017.11.022
  • 64. Wickström H, Palo M, Rijckaert K, et al. Improvement of dissolution rate of indomethacin by inkjet printing. Eur J Pharm Sci. 2015;75:91-100. https://doi.org/10.1016/j.ejps.2015.03.009
  • 65. Pardeike J, Strohmeier DM, Schrödl N, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93-100. https://doi.org/10.1016/j.ijpharm.2011.08.033
  • 66. Cheow WS, Kiew TY, Hadinoto K. Combining inkjet printing and amorphous nanonization to prepare personalized dosage forms of poorly-soluble drugs. Eur J Pharm Biopharm. 2015;96:314-321. https://doi.org/10.1016/j.ejpb.2015.08.012
  • 67. Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ. Multimechanism oral dosage forms fabricated by three dimensional printing™. Journal of Controlled Release. 2000;66(1):11-17. https://doi.org/10.1016/s0168-3659(99)00224-2
  • 68. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1-2):105-111. https://doi.org/10.1016/j.ijpharm.2013.11.021
  • 69. Jivraj I I, Martini LG, Thomson CM. An overview of the different excipients useful for the direct compression of tablets. Pharm Sci Technol Today. 2000;3(2):58-63. https://doi.org/10.1016/s1461-5347(99)00237-0
  • 70. Sastry SV, Nyshadham JR, Fix JA. Recent technological advances in oral drug delivery - a review. Pharm Sci Technol Today. 2000;3(4):138-145. https://doi.org/10.1016/s1461-5347(00)00247-9
  • 71. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643-650. https://doi.org/10.1016/j.ijpharm.2015.07.067
  • 72. Ilyés K, Kovács NK, Balogh A, et al. The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: Material considerations-printability-process modulation, with consecutive effects on in vitro release, stability and degradation. Eur J Pharm Sci. 2019;129:110-123. https://doi.org/10.1016/j.ejps.2018.12.019
  • 73. Matijašić G, Gretić M, Kezerić K, Petanjek J, Vukelić E. Preparation of Filaments and the 3D Printing of Dronedarone HCl Tablets for Treating Cardiac Arrhythmias. AAPS PharmSciTech. 2019;20(8):310. https://doi.org/10.1208/s12249-019-1522-9
  • 74. Fina F, Goyanes A, Rowland M, Gaisford S, W Basit A. 3D Printing of Tunable Zero-Order Release Printlets. Polymers (Basel). 2020;12(8):1769. https://doi.org/10.3390/polym12081769
  • 75. Saviano M, Aquino RP, Del Gaudio P, Sansone F, Russo P. Poly(vinyl alcohol) 3D printed tablets: The effect of polymer particle size on drug loading and process efficiency. Int J Pharm. 2019;561:1-8. https://doi.org/10.1016/j.ijpharm.2019.02.025
  • 76. Li Q, Wen H, Jia D, et al. Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing. Int J Pharm. 2017;525(1):5-11. https://doi.org/10.1016/j.ijpharm.2017.03.066
  • 77. Linares V, Casas M, Caraballo I. Printfills: 3D printed systems combining fused deposition modeling and injection volume filling. Application to colon-specific drug delivery. Eur J Pharm Biopharm. 2019;134:138-143. https://doi.org/10.1016/j.ejpb.2018.11.021
  • 78. Clark EA, Alexander MR, Irvine DJ, et al. Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. Int J Pharm. 2020;578:118805. https://doi.org/10.1016/j.ijpharm.2019.118805
  • 79. Kempin W, Domsta V, Grathoff G, et al. Immediate Release 3D-Printed Tablets Produced Via Fused Deposition Modeling of a Thermo-Sensitive Drug. Pharm Res. 2018;35(6):124. https://doi.org/10.1007/s11095-018-2405-6
  • 80. Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1-2):144-152. https://doi.org/10.1016/j.ijpharm.2018.04.055
  • 81. Jamróz W, Kurek M, Szafraniec-Szczęsny J, et al. Speed it up, slow it down…An issue of bicalutamide release from 3D printed tablets. Eur J Pharm Sci. 2020;143:105169. https://doi.org/10.1016/j.ejps.2019.105169
  • 82. Luongo F, Mangano FG, Macchi A, Luongo G, Mangano C. Custom-Made Synthetic Scaffolds for Bone Reconstruction: A Retrospective, Multicenter Clinical Study on 15 Patients. Biomed Res Int. 2016;2016:5862586. https://doi.org/10.1155/2016/5862586
  • 83. Varan C, Wickström H, Sandler N, Aktaş Y, Bilensoy E. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int J Pharm. 2017;531(2):701-713. https://doi.org/10.1016/j.ijpharm.2017.04.036
  • 83. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1-2):161-170. https://doi.org/10.1016/j.ijpharm.2017.04.077
  • 85. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539(1-2):75-82. https://doi.org/10.1016/j.ijpharm.2018.01.036
  • 86. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41-48. https://doi.org/10.1016/j.jconrel.2016.05.034
  • 87. Lee K-J, Kang A, Delfino JJ, et al. Evaluation of critical formulation factors in the development of a rapidly dispersing captopril oral dosage form. Drug Dev Ind Pharm. 2003;29(9):967-979. https://doi.org/10.1081/ddc-120025454
  • 88. Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425-432. https://doi.org/10.1016/j.ijpharm.2018.03.031
  • 89. Algahtani MS, Mohammed AA, Ahmad J, Saleh E. Development of a 3D Printed Coating Shell to Control the Drug Release of Encapsulated Immediate-Release Tablets. Polymers (Basel). 2020;12(6):1395. https://doi.org/10.3390/polym12061395
  • 90. Pereira T, Kennedy JV, Potgieter J. A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manufacturing. 2019;30:11-18. https://doi.org/10.1016/j.promfg.2019.02.003
  • 91. Park JY, Kim HY, Kim JH, Kim JH, Kim WC. Comparison of prosthetic models produced by traditional and additive manufacturing methods. J Adv Prosthodont. 2015;7(4):294-302. https://doi.org/10.4047/jap.2015.7.4.294
  • 92. Sinha SK. Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing. 3D and 4D Printing of Polymer Nanocomposite Materials, Elsevier; 2020. p. 119-160. https://doi.org/10.1016/b978-0-12-816805-9.00005-3
  • 93. Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue. 2017;94:178-191. https://doi.org/10.1016/j.ijfatigue.2016.06.020
  • 94. Goyanes A, Buanz ABM, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157-162. https://doi.org/10.1016/j.ejpb.2014.12.003
  • 95. Yi H-G, Choi Y-J, Kang KS, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231-241. https://doi.org/10.1016/j.jconrel.2016.06.015
  • 96. Karakurt I, Aydoğdu A, Çıkrıkcı S, Orozco J, Lin L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study. Int J Pharm. 2020;584:119428. https://doi.org/10.1016/j.ijpharm.2020.119428
  • 97. Healy AV, Fuenmayor E, Doran P, Geever LM, Higginbotham CL, Lyons JG. Additive Manufacturing of Personalized Pharmaceutical Dosage Forms via Stereolithography. Pharmaceutics. 2019;11(12):645. https://doi.org/10.3390/pharmaceutics11120645
  • 98. Goyanes A, Chang H, Sedough D, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414-420. https://doi.org/10.1016/j.ijpharm.2015.10.039
  • 99. Tagami T, Nagata N, Hayashi N, et al. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler. Int J Pharm. 2018;543(1-2):361-367. https://doi.org/10.1016/j.ijpharm.2018.03.057
  • 100. Lim SH, Chia SMY, Kang L, Yap KY-L. Three-Dimensional Printing of Carbamazepine Sustained-Release Scaffold. J Pharm Sci. 2016;105(7):2155-2163. https://doi.org/10.1016/j.xphs.2016.04.031
  • 101. Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T. Fabrication of Muco-Adhesive Oral Films by the 3D Printing of Hydroxypropyl Methylcellulose-Based Catechin-Loaded Formulations. Biol Pharm Bull. 2019;42(11):1898-1905. https://doi.org/10.1248/bpb.b19-00481
  • 102. Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T. 3D Printing Factors Important for the Fabrication of Polyvinylalcohol Filament-Based Tablets. Biol Pharm Bull. 2017;40(3):357-364. https://doi.org/10.1248/bpb.b16-00878
  • 103. Beck RCR, Chaves PS, Goyanes A, et al. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528(1-2):268-279. https://doi.org/10.1016/j.ijpharm.2017.05.074
  • 104. Costa PF, Puga AM, Díaz-Gomez L, Concheiro A, Busch DH, Alvarez-Lorenzo C. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Int J Pharm. 2015;496(2):541-550. https://doi.org/10.1016/j.ijpharm.2015.10.055
  • 105. Rattanakit P, Moulton SE, Santiago KS, Liawruangrath S, Wallace GG. Extrusion printed polymer structures: a facile and versatile approach to tailored drug delivery platforms. Int J Pharm. 2012;422(1-2):254-263. https://doi.org/10.1016/j.ijpharm.2011.11.007
  • 106. Li Q, Guan X, Cui M, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1-2):325-332. https://doi.org/10.1016/j.ijpharm.2017.10.037
  • 107. Tagami T, Ito E, Hayashi N, Sakai N, Ozeki T. Application of 3D printing technology for generating hollow-type suppository shells. Int J Pharm. 2020;589:119825. https://doi.org/10.1016/j.ijpharm.2020.119825
  • 108. Siyawamwaya M, du Toit LC, Kumar P, Choonara YE, Kondiah PPPD, Pillay V. 3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery. Eur J Pharm Biopharm. 2019;138:99-110. https://doi.org/10.1016/j.ejpb.2018.04.007
  • 109. Kyobula M, Adedeji A, Alexander MR, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release. 2017;261:207-215. https://doi.org/10.1016/j.jconrel.2017.06.025
  • 110. Kao CT, Chen YJ, Huang TH, Lin YH, Hsu TT, Ho CC. Assessment of the Release Profile of Fibroblast Growth Factor-2-Load Mesoporous Calcium Silicate/Poly-ε-caprolactone 3D Scaffold for Regulate Bone Regeneration. Processes. 2020;8(10):1249. https://doi.org/10.3390/pr8101249
  • 111. Goyanes A, Buanz ABM, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1-2):88-92. https://doi.org/10.1016/j.ijpharm.2014.09.044
  • 112. Weisman JA, Ballard DH, Jammalamadaka U, et al. 3D Printed Antibiotic and Chemotherapeutic Eluting Catheters for Potential Use in Interventional Radiology: In Vitro Proof of Concept Study. Acad Radiol. 2019;26(2):270-274. https://doi.org/10.1016/j.acra.2018.03.022
  • 113. Wen H, He B, Wang H, et al. Structure-Based Gastro-Retentive and Controlled-Release Drug Delivery with Novel 3D Printing. AAPS PharmSciTech. 2019;20(2):68. https://doi.org/10.1208/s12249-018-1237-3
  • 114. Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, et al. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci. 2018;120:40-52. https://doi.org/10.1016/j.ejps.2018.04.020
  • 115. Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313-317. https://doi.org/10.1016/j.ijpharm.2017.09.003
  • 116. Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The Application of 3D Printing in the Formulation of Multilayered Fast Dissolving Oral Films. J Pharm Sci. 2018;107(4):1076-1085. https://doi.org/10.1016/j.xphs.2017.11.019
  • 117. Scoutaris N, Ross SA, Douroumis D. 3D Printed “Starmix” Drug Loaded Dosage Forms for Paediatric Applications. Pharm Res. 2018;35(2):34. https://doi.org/10.1007/s11095-017-2284-2
  • 118. Holländer J, Genina N, Jukarainen H, et al. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. J Pharm Sci. 2016;105(9):2665-2676. https://doi.org/10.1016/j.xphs.2015.12.012
  • 119. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53-63. https://doi.org/10.1016/j.ejps.2015.11.005
  • 120. Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J Control Release. 2017;268:40-48. https://doi.org/10.1016/j.jconrel.2017.10.003
  • 121. Smith D, Kapoor Y, Hermans A, et al. 3D printed capsules for quantitative regional absorption studies in the GI tract. Int J Pharm. 2018;550(1-2):418-428. https://doi.org/10.1016/j.ijpharm.2018.08.055
  • 122. Huang W, Zheng Q, Sun W, Xu H, Yang X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1-2):33-38. https://doi.org/10.1016/j.ijpharm.2007.02.021
  • 123. García-Alvarez R, Izquierdo-Barba I, Vallet-Regí M. 3D scaffold with effective multidrug sequential release against bacteria biofilm. Acta Biomater. 2017;49:113-126. https://doi.org/10.1016/j.actbio.2016.11.028
  • 124. Ibrahim M, Barnes M, McMillin R, et al. 3D Printing of Metformin HCl PVA Tablets by Fused Deposition Modeling: Drug Loading, Tablet Design, and Dissolution Studies. AAPS PharmSciTech. 2019;20(5):195. https://doi.org/10.1208/s12249-019-1400-5
  • 125. Smith DM, Kapoor Y, Klinzing GR, Procopio AT. Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule. Int J Pharm. 2018;544(1):21-30. https://doi.org/10.1016/j.ijpharm.2018.03.056
  • 126. Huanbutta K, Sangnim T. Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology. Journal of Drug Delivery Science and Technology. 2019;52:831-837. https://doi.org/10.1016/j.jddst.2019.06.004
  • 127. Water JJ, Bohr A, Boetker J, et al. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci. 2015;104(3):1099-1107. https://doi.org/10.1002/jps.24305
  • 128. Gbureck U, Vorndran E, Müller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007;122(2):173-180. https://doi.org/10.1016/j.jconrel.2007.06.022
  • 129. Zhang J, Yang W, Vo AQ, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr Polym. 2017;177:49-57. https://doi.org/10.1016/j.carbpol.2017.08.058
  • 130. Zhang J, Feng X, Patil H, Tiwari RV, Repka MA. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1-2):186-197. https://doi.org/10.1016/j.ijpharm.2016.12.049
  • 131. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1-2):21-30. https://doi.org/10.1016/j.ijpharm.2017.05.021
  • 132. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285-293. https://doi.org/10.1016/j.ijpharm.2017.06.082
  • 133. Holländer J, Hakala R, Suominen J, Moritz N, Yliruusi J, Sandler N. 3D printed UV light cured polydimethylsiloxane devices for drug delivery. Int J Pharm. 2018;544(2):433-442. https://doi.org/10.1016/j.ijpharm.2017.11.016
  • 134. Long J, Nand AV, Ray S, et al. Development of customised 3D printed biodegradable projectile for administrating extended-release contraceptive to wildlife. Int J Pharm. 2018;548(1):349-356. https://doi.org/10.1016/j.ijpharm.2018.07.002
  • 135. Vakili H, Nyman JO, Genina N, Preis M, Sandler N. Application of a colorimetric technique in quality control for printed pediatric orodispersible drug delivery systems containing propranolol hydrochloride. Int J Pharm. 2016;511(1):606-618. https://doi.org/10.1016/j.ijpharm.2016.07.032
  • 136. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3 Pt B):1075-1083. https://doi.org/10.1016/j.ejpb.2013.03.017
  • 137. Wu G, Huang F, Huang Y, et al. Bone inductivity comparison of control versus non-control released rhBMP2 coatings in 3D printed hydroxyapatite scaffold. J Biomater Appl. 2020;34(9):1254-1266. https://doi.org/10.1177/0885328220903962
  • 138. Fu J, Yin H, Yu X, et al. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm. 2018;549(1-2):370-379. https://doi.org/10.1016/j.ijpharm.2018.08.011
  • 139. Bom S, Santos C, Barros R, et al. Effects of Starch Incorporation on the Physicochemical Properties and Release Kinetics of Alginate-Based 3D Hydrogel Patches for Topical Delivery. Pharmaceutics. 2020;12(8):719. https://doi.org/10.3390/pharmaceutics12080719
  • 140. Cheng Y, Qin H, Acevedo NC, Jiang X, Shi X. 3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels. Int J Pharm. 2020;591:119983. https://doi.org/10.1016/j.ijpharm.2020.119983
  • 141. Sergeeva NS, Sviridova IK, Komlev VS, et al. 3D printed constructs with antibacterial or antitumor activity for surgical treatment of bone defects in cancer patients. AIP Conference Proceedings. AIP Publishing LLC; 2017, p. 020063. https://doi.org/10.1063/1.5001642
  • 142. Arafat B, Qinna N, Cieszynska M, Forbes RT, Alhnan MA. Tailored on demand anti-coagulant dosing: An in vitro and in vivo evaluation of 3D printed purpose-designed oral dosage forms. Eur J Pharm Biopharm. 2018;128:282-289. https://doi.org/10.1016/j.ejpb.2018.04.010
Toplam 142 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Reviews
Yazarlar

Berna Kaval 0000-0002-0746-7055

Engin Kapkın 0000-0002-4143-568X

Mustafa Sinan Kaynak 0000-0003-2917-2407

Yayımlanma Tarihi 10 Kasım 2022
Gönderilme Tarihi 28 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 1 Sayı: 2

Kaynak Göster

Vancouver Kaval B, Kapkın E, Kaynak MS. Release kinetics of 3D printed oral solid dosage forms: An overview. Eur J Life Sci. 2022;1(2):70-88.