

# Normal paracontact metric space form on $W_0$ -curvature tensor

### Tuğba Mert<sup>1,\*</sup> <sup>(D)</sup>, Mehmet Atçeken<sup>2</sup> <sup>(D)</sup>, Pakize Uygun<sup>3</sup> <sup>(D)</sup>

<sup>1</sup>Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, Sivas, Türkiye <sup>2,3</sup>Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, Aksaray, Türkiye

**Abstract** – In this article, normal paracontact metric space forms are investigated on  $W_0$ -curvature tensor. Characterizations of normal paracontact space forms are obtained on  $W_0$ -curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, and concircular curvature tensors are discussed on  $W_0$ -curvature tensor. Through these curvature conditions, some important characterizations of normal paracontact metric space forms are obtained. Finally, the need for further research is discussed.

Keywords: W<sub>0</sub>-curvature tensors, semisymmetric manifold, normal paracontact space form

Subject Classification (2020): 53C15, 53C25

### **1. Introduction**

The study of paracontact geometry was initiated by Kenayuki and Williams [1]. Zamkovoy [2] studied paracontact metric manifolds and their subclasses. Recently, Welyczko [3-4] studied curvature and torsion of Frenet Legendre curves in 3-dimensional normal paracontact metric manifolds. In the recent years, contact metric manifolds and their curvature properties have been studied by many authors in [5-7].

In this article, normal paracontact metric space forms are investigated on  $W_0$ -curvature tensor. Characterizations of normal paracontact space forms are obtained on  $W_0$ -curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, concircular curvature tensors are discussed on  $W_0$ -curvature tensor. Through these curvature conditions, some important characterizations of normal paracontact metric space forms are obtained.

### 2. Preliminaries

Take an *n*-dimensional differentiable *M* manifold. If it admits a tensor field  $\phi$  of type (1,1), a contravariant vector field  $\xi$  and a 1-form  $\eta$  satisfying the following conditions:

$$\phi^2 X = X - \eta(X)\xi, \phi\xi = 0, \eta(\phi X) = 0, \eta(\xi) = 1$$
(2.1)

and

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), g(X, \xi) = \eta(X)$$

$$(2.2)$$

\*Corresponding Author

<sup>1</sup>tmert@cumhuriyet.edu.tr; <sup>2</sup>mehmetatceken@aksaray.edu.tr; <sup>3</sup>pakizeuygun@hotmail.com Article History: Received: 09 Jun 2023 — Accepted: 27 Jun 2023 — Published: 02 Jul 2023



for all  $X, Y, \xi \in \chi(M)$ ,  $(\phi, \xi, \eta)$  is called almost paracontact structure and  $(M, \phi, \xi, \eta)$  is called almost paracontact metric manifold. If the covariant derivative of  $\phi$  satisfies

$$(\nabla_X \phi)Y = -g(X,Y)\xi - \eta(Y)X + 2\eta(X)\eta(Y)\xi$$
(2.3)

then, *M* is called a normal paracontact metric manifold, where  $\nabla$  is Levi-Civita connection. From (2.3), we can easily to see that

$$\phi X = \nabla_X \xi \tag{2.4}$$

for any  $X \in \chi(M)$  [1].

Moreover, if such a manifold has constant sectional curvature equal to c, then it is the Riemannian curvature tensor is R given by

$$R(X,Y)Z = \frac{c+3}{4} [g(Y,Z)X - g(X,Z)Y] + \frac{c-1}{4} [\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi + g(\phi Y,Z)\phi X$$
(2.5)  
$$-g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z]$$

for any vector fields  $X, Y, Z \in \chi(M)$  [5].

In a normal paracontact metric space form by direct calculations, we can easily to see that

$$S(X,Y) = \frac{c(n-5) + 3n + 1}{4}g(X,Y) + \frac{(c-1)(5-n)}{4}\eta(X)\eta(Y)$$
(2.6)

which implies that

$$QX = \frac{c(n-5) + 4n + 1}{4}X + \frac{(c-1)(5-n)}{4}\eta(X)\xi$$
(2.7)

for any  $X, Y \in \chi(M)$ , where Q is the Ricci operator and S is the Ricci tensor of M.

**Lemma 2.1.** Let M be an n-dimensional normal paracontact metric manifold. In this case, the following equations hold.

$$R(\xi, X)Y = g(X, Y)\xi - \eta(Y)X$$
(2.8)

$$R(X,\xi)Y = -g(X,Y)\xi + \eta(Y)X$$
(2.9)

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y$$
(2.10)

$$\eta(R(X,Y)Z) = g(\eta(X)Y - \eta(Y)X,Z)$$
(2.11)

$$S(X,\xi) = (n-1)\eta(X)$$
 (2.12)

$$Q\xi = (n-1)\xi \tag{2.13}$$

where R, S, and Q are Riemann curvature tensor, Ricci curvature tensor, and Ricci operator, respectively.

Tripathi and Gunam [8] described a  $\tau$ -curvature tensors of the (1,3) type in an *n*-dimensional (*M*, *g*) semi-Riemann manifold. One of these tensors is defined as follows:

Definition 2.1. Let *M* be an *n*-dimensional semi-Riemannian manifold. The curvature tensor defined as

$$W_0(X,Y)Z = R(X,Y)Z - \frac{1}{n-1}[S(Y,Z)X - g(X,Z)QY]$$
(2.14)

is called the  $W_0$ -curvature tensor.

For the *n*-dimensional normal paracontact metric space form, if we choose  $X = \xi$ ,  $Y = \xi$ , and  $Z = \xi$ , respectively in (2.14), then we get

$$W_0(X,Y)Z = R(X,Y)Z - \frac{1}{n-1}[S(Y,Z)X - g(X,Z)QY]$$
(2.15)

$$W_0(X,\xi)Z = 0 (2.16)$$

$$W_0(X,Y)\xi = \frac{(n-5)(c-1)}{4(n-1)} [\eta(X)Y - \eta(X)\eta(Y)\xi]$$
(2.17)

**Definition 2.2.** Let M be a paracontact manifold. If its Ricci tensor S of type (0,2) is of the form

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y)$$
(2.18)

then *M* is called  $\eta$ -Einstein manifold, where *a*, *b* are smooth functions on *M*. Moreover, if *b* = 0, then the manifold is called Einstein.

**Definition 2.3.** Let (M, g) be a semi-Riemannian manifold and the two-dimensional subspace  $\Pi$  of the tangent space  $T_p(M)$ . If  $K(X_p, Y_p)$  is constant for each  $p \in M$  and  $X_p, Y_p \in T_p(M)$ , then M is called a real space form, where  $K(X_p, Y_p)$  is the section curvature of the  $\Pi$  plane.

### 3. Normal Paracontact Metric Space Forms on W<sub>0</sub>-Curvature Tensor

In this section, the characterization of normal paracontact metric space form under special curvature conditions created by  $W_0$ -curvature tensor with Riemann, Ricci, concircular curvature tensors will be given. State and prove the following theorems.

**Theorem 3.1.** Let *M* be a *n*-dimensional normal paracontact metric space form. If *M* is  $W_0$ -flat, then *M* is an Einstein manifold.

#### Proof.

Assume that manifold M is  $W_0$ -flat. From (2.14), we can write

$$W_0(X,Y)Z = 0$$

for each  $X, Y, Z \in \chi(M)$ . Then, from (2.14), we obtain

$$R(X,Y)Z = \frac{1}{n-1} [S(Y,Z)X - g(X,Z)QY]$$
(3.1)

for each  $X, Y, Z \in \chi(M)$ . If we choose  $Z = \xi$  in (3.1) and using (2.10) and (2.12), we obtain

$$\eta(X)QY = (n-1)\eta(X)Y \tag{3.2}$$

If we choose  $X = \xi$  in (3.2) and take inner product both sides of the last equation by  $Z \in \chi(M)$ , then we get

$$S(Y,Z) = (n-1)g(Y,Z)$$

It is clear from the last equation that M is Einstein manifold.  $\Box$ 

**Theorem 3.2.** Let M be the *n*-dimensional normal paracontact metric space form. If M is  $W_0$ -semisymmetric, then M is an Einstein manifold.

#### Proof.

Assume that M is  $W_0$ -semisymmetric. This means

$$(R(X,Y) \cdot W_0)(U,V,Z) = 0$$

for every  $X, Y, Z, U, V \in \chi(M)$ . Therefore, we can write

$$R(X,Y)W_0(U,V)Z - W_0(R(X,Y)U,V)Z - W_0(U,R(X,Y)V)Z - W_0(U,V)R(X,Y)Z = 0$$
(3.3)

If we choose  $X = \xi$  in (3.3) and make use of (2.8), we get

$$g(Y, W_0(U, V)Z)\xi - \eta(W_0(U, V)Z)Y - g(Y, U)W_0(\xi, V)Z$$
  
+ $\eta(U)W_0(Y, V)Z - g(Y, V)W_0(U, \xi)Z + \eta(V)W_0(U, Y)Z$   
- $g(Y, Z)W_0(U, V)\xi + \eta(Z)W_0(U, V)Y = 0$   
(3.4)

If we use (2.15)-(2.17) in (3.4), we obtain

$$g(Y, W_0(U, V)Z)\xi - \eta(W_0(U, V)Z)Y + Ag(Y, U)g(V, Z)\xi$$
  
-Ag(Y, U)\eta(Z)V +  $\eta(U)W_0(Y, V)Z + \eta(V)W_0(U, Y)Z$   
-Ag(Y, Z) $\eta(U)V + Ag(Y, Z)\eta(U)\eta(V)\xi + \eta(Z)W_0(U, V)Y = 0,$   
(3.5)

where  $A = \frac{(n-5)(c-1)}{4(n-1)}$ . If we choose  $U = \xi$  in (3.5) and use (2.15), we get

$$W_0(Y,V)Z + Ag(V,Z)Y - Ag(Y,Z)V = 0$$
(3.6)

Putting (2.14) in (3.6), we have

$$R(Y,V)Z - \frac{1}{n-1}S(V,Z)Y + \frac{1}{n-1}g(Y,Z)QV + Ag(V,Z)Y - Ag(Y,Z)V = 0$$
(3.7)

If we choose  $Z = \xi$  in (3.5) and use (2.10) and (2.12), we get

$$\frac{1}{n-1}\eta(Y)QV + A\eta(V)Y - A\eta(Y)V = 0$$
(3.8)

In (3.8), if we choose  $Y = \xi$ , and take inner product both sides of the equation by  $Z \in \chi(M)$ , we then have

$$S(V,Z) = \frac{(n-5)(c-1) + 4(n-1)}{4}g(V,Z) - \frac{(n-5)(c-1)}{4}\eta(V)\eta(Z)$$

36

**Theorem 3.3.** Let *M* be the *n*-dimensional normal paracontact metric space form. If *M* satisfies the curvature condition  $W_0 \cdot R = 0$ , then *M* is a real space form with constant scalar curvature.

Proof.

Assume that

$$(W_0(X,Y) \cdot R)(U,V,Z) = 0$$

for every  $X, Y, Z, U, V \in \chi(M)$ . Therefore, we can write

$$W_{0}(X,Y)R(U,V)Z - R(W_{0}(X,Y)U,V)Z$$
  
-R(U,W\_{0}(X,Y)V)Z - R(U,V)W\_{0}(X,Y)Z = 0 (3.9)

If we choose  $X = \xi$  in (3.9) and make use of (2.15), we get

$$-Ag(Y, R(U, V)Z)\xi + A\eta(R(U, V)Z)Y + Ag(Y, U)R(\xi, V)Z$$
  

$$-A\eta(U)R(Y, V)Z + Ag(Y, V)R(U, \xi)Z - A\eta(V)R(U, Y)Z$$
  

$$+Ag(Y, Z)R(U, V)\xi - A\eta(Z)R(U, V)Y = 0$$
(3.10)

If we use (2.8)-(2.10) in (3.10), we obtain

$$-Ag(Y, R(U, V)Z)\xi + A\eta(R(U, V)Z)Y + Ag(Y, U)g(V, Z)\xi$$
  

$$-Ag(Y, U)\eta(Z)V - A\eta(U)R(Y, V)Z - Ag(Y, V)g(U, Z)\xi$$
  

$$+Ag(Y, V)\eta(Z)U - A\eta(V)R(U, Y)Z - A\eta(Z)R(U, V)Y$$
  

$$+Ag(Y, Z)\eta(V)U - Ag(Y, Z)\eta(U)V = 0$$
(3.11)

If we choose  $U = \xi$  in (3.11) and use (2.8), we get

$$-A[R(Y,V)Z - g(V,Z)Y + g(Y,Z)V] = 0$$
(3.12)

**Theorem 3.4.** Let *M* be the *n*-dimensional normal paracontact metric space form. If *M* satisfies the curvature condition  $W_0 \cdot W_0 = 0$ , then *M* is an  $\eta$ -Einstein manifold.

### Proof.

Assume that

 $(W_0(X,Y) \cdot W_0)(U,V,Z) = 0$ 

for every  $X, Y, Z, U, V \in \chi(M)$ . Therefore, we can write

$$W_0(X,Y)W_0(U,V)Z - W_0(W_0(X,Y)U,V)Z - W_0(U,W_0(X,Y)V)Z - W_0(U,V)W_0(X,Y)Z = 0$$
(3.13)

If we choose  $X = \xi$  in (3.13) and make use of (2.15), we get

$$-Ag(Y, W_{0}(U, V)Z)\xi + A\eta(W_{0}(U, V)Z)Y + Ag(Y, U)W_{0}(\xi, V)Z$$
  

$$-A\eta(U)W_{0}(Y, V)Z + Ag(Y, V)W_{0}(U, \xi)Z - A\eta(V)W_{0}(U, Y)Z$$
  

$$+Ag(Y, Z)W_{0}(U, V)\xi - A\eta(Z)W_{0}(U, V)Y = 0$$
(3.14)

If we use (2.15)-(2.17) in (3.14), we obtain

$$-Ag(Y, W_{0}(U, V)Z)\xi + A\eta(W_{0}(U, V)Z)Y - A^{2}g(Y, U)g(V, Z)\xi$$
  
+  $A^{2}g(Y, U)\eta(Z)V - A\eta(U)W_{0}(Y, V)Z - A\eta(V)W_{0}(U, Y)Z$   
+  $A^{2}g(Y, Z)\eta(U)V - A^{2}g(Y, Z)\eta(U)\eta(V)\xi - A\eta(Z)W_{0}(U, V)Y = 0$   
(3.15)

If we choose  $U = \xi$  in (3.15) and make the necessary adjustments using (2.15), we get

$$-A\{W_0(Y,V)Z + A[g(V,Z)Y - g(Y,Z)V]\} = 0$$
(3.16)

Putting (2.14) in (3.16) and if we choose  $Z = \xi$ , we obtain

$$-A\left[A\eta(V)Y - (A+1)\eta(Y)V + \frac{1}{n-1}\eta(Y)QV\right] = 0$$
(3.17)

If we choose  $Y = \xi$  in (3.17), then we take inner product both sides of the equation by  $Z \in \chi(M)$ , we have

$$S(V,Z) = \frac{(n-5)(c-1) + 4(n-1)}{4}g(V,Z) - \frac{(n-5)(c-1)}{4}\eta(V)\eta(Z)$$

**Corollary 3.1.** Let *M* be the *n*-dimensional normal paracontact metric space form. If *M* satisfies the curvature condition  $W_0 \cdot W_0 = 0$ , then *M* is an Einstein manifold if and only if *M* is a real space form with constant scalar curvature c = 1.

Definition 3.1. Let *M* be an *n*-dimensional Riemannian manifold. The curvature tensor defined as

$$\tilde{Z}(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)}[g(Y,Z)X - g(X,Z)Y]$$
(3.18)

is called the concircular curvature tensor.

For the *n*-dimensional normal paracontact metric space form, if we choose  $X = \xi$ ,  $Y = \xi$ , and  $Z = \xi$  in (3.18), respectively, then we get

$$\tilde{Z}(\xi, Y)Z = \left[1 - \frac{r}{n(n-1)}\right] [g(Y, Z)\xi - \eta(Z)Y]$$
(3.19)

$$\tilde{Z}(X,\xi)Z = \left[1 - \frac{r}{n(n-1)}\right] \left[-g(X,Z)\xi + \eta(Z)Y\right]$$
(3.20)

$$\tilde{Z}(X,Y)\xi = \left[1 - \frac{r}{n(n-1)}\right] \left[\eta(Y)X - \eta(X)Y\right]$$
(3.21)

**Theorem 3.5.** Let *M* be the *n*-dimensional normal paracontact metric space form. If *M* satisfies the curvature condition  $W_0 \cdot \tilde{Z} = 0$ , then *M* is a real space form with constant scalar curvature.

### Proof.

Assume that

$$(W_0(X,Y)\cdot\tilde{Z})(U,V,Z)=0$$

for every  $X, Y, Z, U, V \in \chi(M)$ . Therefore, we can write

$$W_0(X,Y)\tilde{Z}(U,V)Z - \tilde{Z}(W_0(X,Y)U,V)Z - \tilde{Z}(U,W_0(X,Y)V)Z - \tilde{Z}(U,V)W_0(X,Y)Z = 0$$
(3.22)

If we choose  $X = \xi$  in (3.22) and make use of (2.15), we get

$$-Ag(Y, \tilde{Z}(U, V)Z)\xi + A\eta(\tilde{Z}(U, V)Z)Y + Ag(Y, U)\tilde{Z}(\xi, V)Z$$
  

$$-A\eta(U)\tilde{Z}(Y, V)Z + Ag(Y, V)\tilde{Z}(U, \xi)Z - A\eta(V)\tilde{Z}(U, Y)Z$$
  

$$+Ag(Y, Z)\tilde{Z}(U, V)\xi - A\eta(Z)\tilde{Z}(U, V)Y = 0$$
(3.23)

If we use (3.19)-(3.21) in (3.23), we obtain

$$-Ag(Y,\tilde{Z}(U,V)Z)\xi + A\eta(\tilde{Z}(U,V)Z)Y + ABg(Y,U)\eta g(V,Z)\xi$$
  

$$-ABg(Y,U)\eta(Z)V - A\eta(U)\tilde{Z}(Y,V)Z - ABg(Y,V)g(U,Z)\xi$$
  

$$+ABg(Y,V)\eta(Z)U - A\eta(V)\tilde{Z}(U,Y)Z + ABg(Y,Z)\eta(V)U$$
  

$$-ABg(Y,Z)\eta(U)V - A\eta(Z)\tilde{Z}(U,V)Y = 0$$
(3.24)

where  $B = \left[1 - \frac{r}{n(n-1)}\right]$ . If we choose  $U = \xi$  in (3.24) and make the necessary adjustments using (3.19), we get

$$-A\{\tilde{Z}(Y,V)Z + B[g(Y,Z)V - g(V,Z)Y]\} = 0$$
(3.25)

If we substitute the (3.18) in (3.25) and we make the necessary arrangements, we obtain

$$-A[R(Y,V)Z - g(V,Z)Y + g(Y,Z)V] = 0$$

**Theorem 3.6.** Let *M* be the *n*-dimensional normal paracontact metric space form. If *M* satisfies the curvature condition  $W_0 \cdot S = 0$ , then *M* is an Einstein manifold.

Proof.

Assume that

$$(W_0(X,Y)\cdot S)(U,V)=0$$

for every  $X, Y, U, V \in \chi(M)$ . Therefore, we can write

$$S(W_0(X,Y)U,V) + S(U,W_0(X,Y)V) = 0$$
(3.26)

If we choose  $X = \xi$  in (3.26) and make use of (2.15), we get

$$-A(n-1)g(Y,U)\eta(V) + A\eta(U)S(Y,V) -A(n-1)g(Y,V)\eta(U) + A\eta(V)S(U,Y) = 0$$
(3.27)

If we choose  $U = \xi$  in (3.27), we have

$$\frac{(n-5)(c-1)}{4(n-1)}[S(Y,V) - (n-1)g(Y,V)] = 0$$

# 4. Conclusion

In this article, normal paracontact metric space forms are investigated on  $W_0$ -curvature tensor. Characterizations of normal paracontact space forms are obtained on  $W_0$ -curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, concircular curvature tensors are discussed on  $W_0$ -curvature tensor. Through these curvature conditions, important characterizations of normal paracontact metric space forms are obtained.

## **Author Contributions**

All the authors equally contributed to this work. They all read and approved the final version of the paper.

### **Conflict of Interest**

All the authors declare no conflict of interest.

### References

- S. Kenayuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal 99 (1985) 173–187.
- [2] S. Zamkovoy, Canonical connections on paracontact manifolds, Annals of Global Analysis and Geometry 36 (2009) 37–60.
- [3] J. Welyczko, On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. *Results in Mathematics*, 54 (2009) 377–387.
- [4] J. Welyczko, Slant curves in 3-dimensional normal contact metric manifolds, Mediterranean Journal of Mathematics 11 (2014) 965–978.
- [5] H. B. Pandey, A. Kumar, Anti invariant submanifolds of almost paracontact metric manifolds, Indian Journal of Pure and Applied Mathematics 16 (6) (1985) 586–590.
- [6] Ü. Yıldırım, M. Atçeken, S. Dirik, S. A normal paracontact metric manifold satisfying some conditions on the M-projective curvature tensor. Konural Journal of Mathematics 7 (1) (2019) 217–221.

- [7] Ü. Yıldırım, M. Atçeken, S. Dirik, *Pseudo projective curvature tensor satisfying some properties on a normal paracontactmetric manifold*, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 (1) (2019) 997–1006.
- [8] M. Tripathi, P. Gupta, τ-Curvature Tensor on A Semi-Riemannian Manifold. Journal of Advanced Mathematical Studies 4 (1) (2011) 117–129.