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Abstract − In this article, normal paracontact metric space forms are investigated on 𝑊0-curvature tensor. Characterizations of 

normal paracontact space forms are obtained on 𝑊0-curvature tensor. Special curvature conditions established with the help of 

Riemann, Ricci, and concircular curvature tensors are discussed on 𝑊0-curvature tensor. Through these curvature conditions, some 

important characterizations of normal paracontact metric space forms are obtained. Finally, the need for further research is discussed. 
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1. Introduction 

The study of paracontact geometry was initiated by Kenayuki and Williams [1]. Zamkovoy [2] studied 

paracontact metric manifolds and their subclasses. Recently, Welyczko [3-4] studied curvature and torsion of 

Frenet Legendre curves in 3-dimensional normal paracontact metric manifolds. In the recent years, contact 

metric manifolds and their curvature properties have been studied by many authors in [5-7]. 

In this article, normal paracontact metric space forms are investigated on 𝑊0-curvature tensor. 

Characterizations of normal paracontact space forms are obtained on 𝑊0-curvature tensor. Special curvature 

conditions established with the help of Riemann, Ricci, concircular curvature tensors are discussed on 𝑊0-

curvature tensor. Through these curvature conditions, some important characterizations of normal paracontact 

metric space forms are obtained. 

2. Preliminaries 

Take an 𝑛-dimensional differentiable 𝑀 manifold. If it admits a tensor field 𝜙 of type (1,1), a contravariant 

vector field 𝜉 and a 1-form 𝜂 satisfying the following conditions: 

𝜙2𝑋 = 𝑋 − 𝜂(𝑋)𝜉, 𝜙𝜉 = 0, 𝜂(𝜙𝑋) = 0, 𝜂(𝜉) = 1 (2.1) 

and 

𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌), 𝑔(𝑋, 𝜉) = 𝜂(𝑋) (2.2) 
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for all 𝑋, 𝑌, 𝜉 ∈ 𝜒(𝑀), (𝜙, 𝜉, 𝜂) is called almost paracontact structure and (𝑀, 𝜙, 𝜉, 𝜂) is called almost 

paracontact metric manifold. If the covariant derivative of 𝜙 satisfies  

(∇𝑋𝜙)𝑌 = −𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 + 2𝜂(𝑋)𝜂(𝑌)𝜉 (2.3) 

then, 𝑀 is called a normal paracontact metric manifold, where ∇ is Levi-Civita connection. From (2.3), we 

can easily to see that 

𝜙𝑋 = ∇𝑋𝜉 (2.4) 

for any 𝑋 ∈ 𝜒(𝑀) [1]. 

Moreover, if such a manifold has constant sectional curvature equal to 𝑐, then it is the Riemannian curvature 

tensor is 𝑅 given by 

 

𝑅(𝑋, 𝑌)𝑍 =
𝑐 + 3

4
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] +

𝑐 − 1

4
[𝜂(𝑋)𝜂(𝑍)𝑌

                       −𝜂(𝑌)𝜂(𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 + 𝑔(𝜙𝑌, 𝑍)𝜙𝑋

                      −𝑔(𝜙𝑋, 𝑍)𝜙𝑌 − 2𝑔(𝜙𝑋, 𝑌)𝜙𝑍]

 (2.5) 

for any vector fields 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) [5]. 

In a normal paracontact metric space form by direct calculations, we can easily to see that 

𝑆(𝑋, 𝑌) =
𝑐(𝑛 − 5) + 3𝑛 + 1

4
𝑔(𝑋, 𝑌) +

(𝑐 − 1)(5 − 𝑛)

4
𝜂(𝑋)𝜂(𝑌) (2.6) 

which implies that 

𝑄𝑋 =
𝑐(𝑛 − 5) + 4𝑛 + 1

4
𝑋 +

(𝑐 − 1)(5 − 𝑛)

4
𝜂(𝑋)𝜉 (2.7) 

for any 𝑋, 𝑌 ∈ 𝜒(𝑀), where 𝑄 is the Ricci operator and 𝑆 is the Ricci tensor of 𝑀. 

Lemma 2.1. Let 𝑀 be an 𝑛-dimensional normal paracontact metric manifold. In this case, the following 

equations hold. 

𝑅(𝜉, 𝑋)𝑌 = 𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 (2.8) 

𝑅(𝑋, 𝜉)𝑌 = −𝑔(𝑋, 𝑌)𝜉 + 𝜂(𝑌)𝑋 (2.9) 

𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌 (2.10) 

𝜂(𝑅(𝑋, 𝑌)𝑍) = 𝑔(𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋, 𝑍) (2.11) 

𝑆(𝑋, 𝜉) = (𝑛 − 1)𝜂(𝑋) (2.12) 

𝑄𝜉 = (𝑛 − 1)𝜉 (2.13) 

where 𝑅, 𝑆, and 𝑄 are Riemann curvature tensor, Ricci curvature tensor, and Ricci operator, respectively.  
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Tripathi and Gunam [8] described a 𝜏-curvature tensors of the (1,3) type in an 𝑛-dimensional (𝑀, 𝑔) semi-

Riemann manifold. One of these tensors is defined as follows: 

Definition 2.1. Let 𝑀 be an 𝑛-dimensional semi-Riemannian manifold. The curvature tensor defined as  

𝑊0(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

𝑛 − 1
[𝑆(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] (2.14) 

is called the 𝑊0-curvature tensor.  

For the 𝑛-dimensional normal paracontact metric space form, if we choose 𝑋 = 𝜉, 𝑌 = 𝜉, and 𝑍 = 𝜉, 

respectively in (2.14), then we get 

𝑊0(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

𝑛 − 1
[𝑆(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] (2.15) 

𝑊0(𝑋, 𝜉)𝑍 = 0 (2.16) 

𝑊0(𝑋, 𝑌)𝜉 =
(𝑛 − 5)(𝑐 − 1)

4(𝑛 − 1)
[𝜂(𝑋)𝑌 − 𝜂(𝑋)𝜂(𝑌)𝜉] (2.17) 

Definition 2.2. Let 𝑀 be a paracontact manifold. If its Ricci tensor 𝑆 of type (0,2) is of the form 

𝑆(𝑋, 𝑌) = 𝑎𝑔(𝑋, 𝑌) + 𝑏𝜂(𝑋)𝜂(𝑌) (2.18) 

then 𝑀 is called 𝜂-Einstein manifold, where 𝑎, 𝑏 are smooth functions on 𝑀. Moreover, if 𝑏 = 0, then the 

manifold is called Einstein.  

Definition 2.3. Let (𝑀, 𝑔) be a semi-Riemannian manifold and the two-dimensional subspace 𝛱 of the tangent 

space 𝑇𝑝(𝑀). If 𝐾(𝑋𝑝, 𝑌𝑝) is constant for each 𝑝 ∈ 𝑀 and 𝑋𝑝, 𝑌𝑝 ∈ 𝑇𝑝(𝑀), then 𝑀 is called a real space form, 

where 𝐾(𝑋𝑝, 𝑌𝑝) is the section curvature of the 𝛱 plane. 

3. Normal Paracontact Metric Space Forms on 𝑾𝟎-Curvature Tensor 

In this section, the characterization of normal paracontact metric space form under special curvature conditions 

created by 𝑊0-curvature tensor with Riemann, Ricci, concircular curvature tensors will be given. State and 

prove the following theorems. 

Theorem 3.1. Let 𝑀 be a 𝑛-dimensional normal paracontact metric space form. If 𝑀 is 𝑊0-flat, then 𝑀 is an 

Einstein manifold. 

Proof. 

Assume that manifold 𝑀 is 𝑊0-flat. From (2.14), we can write 

𝑊0(𝑋, 𝑌)𝑍 = 0 

for each 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀). Then, from (2.14), we obtain 

𝑅(𝑋, 𝑌)𝑍 =
1

𝑛 − 1
[𝑆(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] (3.1) 

for each 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀). If we choose 𝑍 = 𝜉 in (3.1) and using (2.10) and (2.12), we obtain 

𝜂(𝑋)𝑄𝑌 = (𝑛 − 1)𝜂(𝑋)𝑌 (3.2) 
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If we choose 𝑋 = 𝜉 in (3.2) and take inner product both sides of the last equation by 𝑍 ∈ 𝜒(𝑀), then we get 

𝑆(𝑌, 𝑍) = (𝑛 − 1)𝑔(𝑌, 𝑍) 

It is clear from the last equation that 𝑀 is Einstein manifold. ◻ 

Theorem 3.2. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 is 𝑊0-semisymmetric, 

then 𝑀 is an Einstein manifold.  

Proof. 

Assume that 𝑀 is 𝑊0-semisymmetric. This means 

(𝑅(𝑋, 𝑌) ⋅ 𝑊0)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 

𝑅(𝑋, 𝑌)𝑊0(𝑈, 𝑉)𝑍 − 𝑊0(𝑅(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑊0(𝑈, 𝑅(𝑋, 𝑌)𝑉)𝑍 − 𝑊0(𝑈, 𝑉)𝑅(𝑋, 𝑌)𝑍 = 0 (3.3) 

If we choose 𝑋 = 𝜉 in (3.3) and make use of (2.8), we get 

𝑔(𝑌, 𝑊0(𝑈, 𝑉)𝑍)𝜉 − 𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 − 𝑔(𝑌, 𝑈)𝑊0(𝜉, 𝑉)𝑍

+𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 − 𝑔(𝑌, 𝑉)𝑊0(𝑈, 𝜉)𝑍 + 𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

−𝑔(𝑌, 𝑍)𝑊0(𝑈, 𝑉)𝜉 + 𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0

 (3.4) 

If we use (2.15)-(2.17) in (3.4), we obtain  

𝑔(𝑌, 𝑊0(𝑈, 𝑉)𝑍)𝜉 − 𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

−𝐴𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 + 𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 + 𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

−𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 + 𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑉)𝜉 + 𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0,

 (3.5) 

where 𝐴 =
(𝑛−5)(𝑐−1)

4(𝑛−1)
. If we choose 𝑈 = 𝜉 in (3.5) and use (2.15), we get 

𝑊0(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑉, 𝑍)𝑌 − 𝐴𝑔(𝑌, 𝑍)𝑉 = 0 (3.6) 

Putting (2.14) in (3.6), we have 

𝑅(𝑌, 𝑉)𝑍 −
1

𝑛 − 1
𝑆(𝑉, 𝑍)𝑌 +

1

𝑛 − 1
𝑔(𝑌, 𝑍)𝑄𝑉 + 𝐴𝑔(𝑉, 𝑍)𝑌 − 𝐴𝑔(𝑌, 𝑍)𝑉 = 0 (3.7) 

If we choose 𝑍 = 𝜉 in (3.5) and use (2.10) and (2.12), we get 

1

𝑛 − 1
𝜂(𝑌)𝑄𝑉 + 𝐴𝜂(𝑉)𝑌 − 𝐴𝜂(𝑌)𝑉 = 0 (3.8) 

In (3.8), if we choose 𝑌 = 𝜉, and take inner product both sides of the equation by 𝑍 ∈ 𝜒(𝑀), we then have 

𝑆(𝑉, 𝑍) =
(𝑛 − 5)(𝑐 − 1) + 4(𝑛 − 1)

4
𝑔(𝑉, 𝑍) −

(𝑛 − 5)(𝑐 − 1)

4
𝜂(𝑉)𝜂(𝑍) 

◻ 
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Theorem 3.3. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑅 = 0, then 𝑀 is a real space form with constant scalar curvature.  

Proof. 

Assume that 

(𝑊0(𝑋, 𝑌) ⋅ 𝑅)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 

𝑊0(𝑋, 𝑌)𝑅(𝑈, 𝑉)𝑍 − 𝑅(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍

−𝑅(𝑈, 𝑊0(𝑋, 𝑌)𝑉)𝑍 − 𝑅(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0
 (3.9) 

If we choose 𝑋 = 𝜉 in (3.9) and make use of (2.15), we get 

−𝐴𝑔(𝑌, 𝑅(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑅(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑅(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑅(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑅(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑅(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑅(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑅(𝑈, 𝑉)𝑌 = 0

 (3.10) 

If we use (2.8)-(2.10) in (3.10), we obtain  

−𝐴𝑔(𝑌, 𝑅(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑅(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

−𝐴𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑅(𝑌, 𝑉)𝑍 − 𝐴𝑔(𝑌, 𝑉)𝑔(𝑈, 𝑍)𝜉

+𝐴𝑔(𝑌, 𝑉)𝜂(𝑍)𝑈 − 𝐴𝜂(𝑉)𝑅(𝑈, 𝑌)𝑍 − 𝐴𝜂(𝑍)𝑅(𝑈, 𝑉)𝑌

+𝐴𝑔(𝑌, 𝑍)𝜂(𝑉)𝑈 − 𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 = 0

 (3.11) 

If we choose 𝑈 = 𝜉 in (3.11) and use (2.8), we get 

−𝐴[𝑅(𝑌, 𝑉)𝑍 − 𝑔(𝑉, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑉] = 0 (3.12) 

◻ 

Theorem 3.4. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑊0 = 0, then 𝑀 is an 𝜂-Einstein manifold.  

Proof. 

Assume that  

(𝑊0(𝑋, 𝑌) ⋅ 𝑊0)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 

𝑊0(𝑋, 𝑌)𝑊0(𝑈, 𝑉)𝑍 − 𝑊0(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑊0(𝑈, 𝑊0(𝑋, 𝑌)𝑉)𝑍 − 𝑊0(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0 (3.13) 
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If we choose 𝑋 = 𝜉 in (3.13) and make use of (2.15), we get 

−𝐴𝑔(𝑌, 𝑊0(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑊0(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑊0(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑊0(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0

 (3.14) 

If we use (2.15)-(2.17) in (3.14), we obtain 

−𝐴𝑔(𝑌, 𝑊0(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 − 𝐴2𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

+𝐴2𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 − 𝐴𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

+𝐴2𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 − 𝐴2𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑉)𝜉 − 𝐴𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0

 (3.15) 

If we choose 𝑈 = 𝜉 in (3.15) and make the necessary adjustments using (2.15), we get 

−𝐴{𝑊0(𝑌, 𝑉)𝑍 + 𝐴[𝑔(𝑉, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑉]} = 0 (3.16) 

Putting (2.14) in (3.16) and if we choose 𝑍 = 𝜉, we obtain 

−𝐴 [𝐴𝜂(𝑉)𝑌 − (𝐴 + 1)𝜂(𝑌)𝑉 +
1

𝑛 − 1
𝜂(𝑌)𝑄𝑉] = 0 (3.17) 

If we choose 𝑌 = 𝜉 in (3.17), then we take inner product both sides of the equation by 𝑍 ∈ 𝜒(𝑀), we have 

𝑆(𝑉, 𝑍) =
(𝑛 − 5)(𝑐 − 1) + 4(𝑛 − 1)

4
𝑔(𝑉, 𝑍) −

(𝑛 − 5)(𝑐 − 1)

4
𝜂(𝑉)𝜂(𝑍) 

◻ 

Corollary 3.1. Let 𝑀 be the n-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑊0 = 0, then 𝑀 is an Einstein manifold if and only if 𝑀 is a real space form with constant 

scalar curvature 𝑐 = 1.  

Definition 3.1. Let 𝑀 be an 𝑛-dimensional Riemannian manifold. The curvature tensor defined as  

𝑍(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
𝑟

𝑛(𝑛 − 1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] (3.18) 

is called the concircular curvature tensor.  

For the 𝑛-dimensional normal paracontact metric space form, if we choose 𝑋 = 𝜉, 𝑌 = 𝜉,  and 𝑍 = 𝜉 in (3.18), 

respectively, then we get 

𝑍(𝜉, 𝑌)𝑍 = [1 −
𝑟

𝑛(𝑛 − 1)
] [𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌] (3.19) 

𝑍(𝑋, 𝜉)𝑍 = [1 −
𝑟

𝑛(𝑛 − 1)
] [−𝑔(𝑋, 𝑍)𝜉 + 𝜂(𝑍)𝑌] (3.20) 
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𝑍(𝑋, 𝑌)𝜉 = [1 −
𝑟

𝑛(𝑛 − 1)
] [𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌] (3.21) 

Theorem 3.5. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑍 = 0, then 𝑀 is a real space form with constant scalar curvature.  

Proof.  

Assume that  

(𝑊0(𝑋, 𝑌) ⋅ 𝑍)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 

𝑊0(𝑋, 𝑌)𝑍(𝑈, 𝑉)𝑍 − 𝑍(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑍(𝑈, 𝑊0(𝑋, 𝑌)𝑉)𝑍 − 𝑍(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0 (3.22) 

If we choose 𝑋 = 𝜉 in (3.22) and make use of (2.15), we get 

−𝐴𝑔(𝑌, 𝑍(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑍(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑍(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑍(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑍(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑍(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑍(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑍(𝑈, 𝑉)𝑌 = 0

 (3.23) 

If we use (3.19)-(3.21) in (3.23), we obtain  

−𝐴𝑔(𝑌, 𝑍(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑍(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝐵𝑔(𝑌, 𝑈)𝜂𝑔(𝑉, 𝑍)𝜉

−𝐴𝐵𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑍(𝑌, 𝑉)𝑍 − 𝐴𝐵𝑔(𝑌, 𝑉)𝑔(𝑈, 𝑍)𝜉

+𝐴𝐵𝑔(𝑌, 𝑉)𝜂(𝑍)𝑈 − 𝐴𝜂(𝑉)𝑍(𝑈, 𝑌)𝑍 + 𝐴𝐵𝑔(𝑌, 𝑍)𝜂(𝑉)𝑈

−𝐴𝐵𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 − 𝐴𝜂(𝑍)𝑍(𝑈, 𝑉)𝑌 = 0

 (3.24) 

 where 𝐵 = [1 −
𝑟

𝑛(𝑛−1)
]. If we choose 𝑈 = 𝜉 in (3.24) and make the necessary adjustments using (3.19), we 

get 

−𝐴{𝑍(𝑌, 𝑉)𝑍 + 𝐵[𝑔(𝑌, 𝑍)𝑉 − 𝑔(𝑉, 𝑍)𝑌]} = 0 (3.25) 

If we substitute the (3.18) in (3.25) and we make the necessary arrangements, we obtain 

−𝐴[𝑅(𝑌, 𝑉)𝑍 − 𝑔(𝑉, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑉] = 0 

◻ 

Theorem 3.6. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑆 = 0, then 𝑀 is an Einstein manifold.  

Proof. 

Assume that  

(𝑊0(𝑋, 𝑌) ⋅ 𝑆)(𝑈, 𝑉) = 0 

for every 𝑋, 𝑌, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 
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𝑆(𝑊0(𝑋, 𝑌)𝑈, 𝑉) + 𝑆(𝑈, 𝑊0(𝑋, 𝑌)𝑉) = 0 (3.26) 

If we choose 𝑋 = 𝜉 in (3.26) and make use of (2.15), we get  

−𝐴(𝑛 − 1)𝑔(𝑌, 𝑈)𝜂(𝑉) + 𝐴𝜂(𝑈)𝑆(𝑌, 𝑉)

−𝐴(𝑛 − 1)𝑔(𝑌, 𝑉)𝜂(𝑈) + 𝐴𝜂(𝑉)𝑆(𝑈, 𝑌) = 0
 (3.27) 

If we choose 𝑈 = 𝜉 in (3.27), we have 

(𝑛 − 5)(𝑐 − 1)

4(𝑛 − 1)
[𝑆(𝑌, 𝑉) − (𝑛 − 1)𝑔(𝑌, 𝑉)] = 0 

◻ 

4. Conclusion 

In this article, normal paracontact metric space forms are investigated on 𝑊0-curvature tensor. 

Characterizations of normal paracontact space forms are obtained on 𝑊0-curvature tensor. Special curvature 

conditions established with the help of Riemann, Ricci, concircular curvature tensors are discussed on 𝑊0-

curvature tensor. Through these curvature conditions, important characterizations of normal paracontact metric 

space forms are obtained. 
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