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 Machine Learning (ML) has been used in the prediction of geolocation with improved 
accuracies in this work. The pre-processed data was subjected to prediction analytics using 
22 machine learning algorithms over regression mode. It was observed that Extra Trees 
Regressor performed well with better accuracies in predicting latitude, longitude, and 
Haversine distance, respectively. Regression models like CatBoost, Extreme Gradient 
boosting, Light Gradient boosting machine, and Gradient boosting regressor were also tested. 
The R2 values were computed for each case, and we obtained 0.96 (Longitude), 0.98 (Latitude), 
and 0.96 (Haversine), respectively. The evaluation of models was done using metrics like MAE, 
MASE, RMSE, R2, RMSLE, and MAPE and R2 is considered most important than others. The 
effect of data point was calculated using Cooks’ distance, and the variable fluoride has a 
significant impact on the prediction accuracy of Longitude followed by RSC, Cl, SO4, SAR, NO3, 
NA, Ca, EC and pH variables. In the prediction of latitude, the SAR variable played a significant 
role, followed by Na and TH. According to the t-SNE manifold, three longitude values were 
quite different from the others. This work is supported by some of the manifests like Cooks’ 
distance outlier detection, feature importance plot, t-SNE manifold, prediction error plot, 
residuals plot, RFECV plot, and validation curve. This work is done to report that the challenge 
of predicting both latitude and longitude on a common ground is solved partially, if not 
completely, and machine learning tools can be used for this purpose. Haversine distance can 
be obtained from latitude and longitude and can be used in the prediction of geolocation. 
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1. Introduction  
 

Groundwater is an essential source that needs to be 
protected from external and internal pollutants and its 
overexploitation to achieve the goals set by the United 
Nations through SDGs [1-2]. Machine learning tools can 
be effectively used in the prediction of environmental 
factors that can disturb the purity and extent of 
groundwater across the world [3]. Most of the modeling 
techniques that are considered predictive ML algorithms 
are adaptable and can simulate nonlinear and 
complicated interactions within a small window of time 
[4]. We can observe different hydrogeological 
environments that can also alter the availability of 
groundwater [5]. The availability of data is limited, and 
this is the main problem that hinders experimentation 
and analysis [6]. The prediction of groundwater levels 
was possible using simulation methods, and this has 
helped in groundwater management effectively [7-9]. 
Several numerical models were used in the prediction of 

the quantity and quality of groundwater [10-11]. We can 
use Long Short-Term Memory (LSTM), Extreme Learning 
Machine (ELM), and Deep Learning (DL) methods for 
accurate and meaningful predictions [12-16]. The 
autoML frameworks can be used in handling the whole 
ML pipeline, starting from data input to the display of 
outputs in graphical modes and also solving other data-
related problems [17]. AutoML tools were previously 
used in the investigation of drinking water quality [18]. 
Pycaret is one of the important libraries that can be used 
in the AutoML frameworks with appreciable results in 
the form of metrics and graphs [19]. Regression methods 
were used in the investigation of water quality to know 
correlation and other insights [20]. The latitude and 
longitude values can be merged in the form of Haversine 
distance, and it is being used for some of the location-
based services [21]. Haversine distance is least affected 
by some of the features like the width of a valley, the 
height of a mountain, etc., and hence can be used in 
solving some of the navigation problems [22]. The 
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interpolation techniques based on deterministic 
geostatistical techniques and artificial neural networks 
were used to create digital elevation models [23]. The 
extent of solar radiation was forecasted/predicted using 
machine learning approaches [24]. The water levels in 
the surface water body like lake was predicted using 
neurocomputing intelligence methods [25]. The 
empirical equations that are associated with climatic 
regions were calibrated using genetic algorithm, particle 
swarm optimization techniques along with multi-gene 
genetic programming method [26]. 

There is some gap in research that embraces the fact 
that variables of groundwater quality can be used in the 
prediction of geolocation with reasonable accuracy. 
Though the attempt to achieve the same is naïve at this 

point in time, considering data availability, this work 
might lead to higher enhancements in the future in 
solving navigation problems and improving location-
based services. 

 

2. Material and Method 
 

2.1. Data 
 

The datasets essential for this study were collected 
from the WRIS system of Government of India website 
[27] and Central Groundwater Control Board website 
[28]. 

 The study area is shown in Figure 1. 1000 random 
points were selected for this study.  

 

 
Figure 1. Study area. 

 
2.2. Method  

 
The models that were considered in this study are 

Extra Trees Regressor, CatBoost Regressor, Extreme 
Gradient Boosting, Light Gradient Boosting Machine, 
Random Forest, Gradient Boosting Regressor, Decision 
Tree, AdaBoost Regressor, k Neighbors Regressor, Ridge 
Regression, Linear Regression, Least Angle Regression, 
etc. Evaluation metrics like MAE, MSE, RMSE, R2, RMSLE, 
and MAPE for each algorithm were considered. The 
datasets needed for this study were subjected to 
standard procedures that deal with data imbalance, 
missing values, and errors under the ML framework. The 
variables that were considered are HCO3, Ca, Cl, F, K, Mg, 
Na, NO3, pH, RSC, SAR, SO4, TH (Total hardness), TA 
(Total alkalinity), and EC (Electrical conductivity). These 
variables were combined with latitude, longitude, and 
Haversine values separately, and they were considered 
as dependent or response variables, respectively. The 
combined datasets were passed onto the ML framework 

separately, and prediction accuracies with evaluation 
metrics were reported. The methodology employed in 
this study is given in Figure 2. The python packages built-
in H2O AutoML was used in this study. The information 
linked with the machine learning algorithms and H2O 
AutoML package can be viewed through the online 
sources i.e., [29] (for models/algorithms) and [30] (for 
H2O autoML). 

The extra-trees regressor is a meta estimator that can 
fit randomized decision tress on sub-samples and 
averaging is done to enhance the prediction accuracy and 
regulates overfitting. CatBoost regressor relies on 
gradient boosted decision trees and a specific set of these 
trees will be built accordingly. Every tree that is built can 
be devoid of loss compared to the original ones. XGBoost 
or Extreme Gradient Boosting regressor can be scalable 
and it supplies parallel tree boosting. It can lower the 
error caused due to bias. Light Gradient Boosting 
Machine regressor uses traditional gradient boosting 
decision tree algorithms and also uses exclusive feature 
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bundling (EFB) and Gradient-based One-Side sampling 
(GBDT) algorithms. More information on the 
algorithms/regressors can be obtained from the 
aforementioned links.  

Central Haversine distance can be calculated between 
two points using Equation 1. 

Where ‘r’ is the radius of earth, ‘d’ is the distance 
between two points, ø1, ø2 is the latitude of the two points 
and λ1 and λ2 are the longitudes of the two points.  

 
Haversine (d/r) = haversine (ø1- ø2) + cos (ø1) cos (ø2) haversine (λ2 – λ1) (1) 

 

 
Figure 2. Methodology. 

 
 
3. Results  
 

3.1 Prediction of longitude 
 

The Extra Tress Regressor (et) performed better than 
other regressors like CatBoost, Extreme Gradient 
boosting, Light Gradient boosting machine, Gradient 
boosting regressor, etc., predicting the Longitude 
variable. The ‘et’ regressor yielded an R2 value of 0.96 
with MAE (0.0391), MSE (0.004), RMSE (0.062), RMSLE 
(0.0008), and MAPE (0.0005), showing that the model 
fitted well and is shown in Figure 3 and model metrics for 
‘et’ are given in Figure 4. The Cook’s Distance Outlier 
Detection plot (6.98%) is given in Figure 5, and it 
represents the importance of an instance that might 
affect the prediction. The feature importance plot (Figure 
6) shows that the variable ‘F’ has more influence than 
other variables like RSC, Cl, SO4, SAR, NO3, Na, Ca, EC and 
pH.  According to the t-SNE Manifold plot, the longitude 

values 78.6, 78.4, and 78.2 are quite different from the 
others (Figure 7).  The prediction error of the Extra Trees 
Regressor is shown in Figure 6, and we can observe an R2 
value of 0.965 with a best fit and identity (Figure 8).  The 
residuals R2 for training data is 1 and for test data, it is 
0.965 (Figure 9). The Recursive feature elimination with 
cross-validation (RFECV) plot showed a score of 0.97 
(Figure 10). The training score and the CV or cross-
validation score are steadily increasing with each other, 
and it reflects that this model fitted well (Figure 11).  

The plot given in Figure 3 shows the combined 
metrics of models used in this study. The dominance of 
R2 metric is given in dark green. 

 
3.2 Prediction of latitude 
 

The Extra Tress Regressor (et) performed better than 
other regressors like CatBoost, Extreme Gradient 
boosting, Light Gradient boosting machine, Random 
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Forest, etc., predicting the Latitude variable. The ‘et’ 
regressor yielded an R2 value of 0.98 with MAE (0.0261), 
MSE (0.0019), RMSE (0.0419), RMSLE (0.0027), and 
MAPE (0.0018), showing that the model fitted well and is 
shown in Figure 12 and model metrics are given in Figure 
13. The Cook’s Distance Outlier Detection (6.78%) is 
given in Figure 14. The feature importance plot shows 
that SAR highly influences the prediction, followed by Na, 
TH, Ca, Mg, SO4, NO3, EC, Cl, and RSC (Figure 15).  The t-
SNE Manifold plot shows that the latitude values 14.8, 
114.6, and 14.4 differ from others (Figure 16). The 
prediction error plot shows that the R2 value is 0.984 
with best fit and identity (Figure 17).  The predicted 
value versus Residuals is given in Figure 18 with Train R2 

of 1 and Test R2 value of 0.984. RFECV plot scored 0.983 
with 15 features (Figure 19). The validation curve 
showed that the training and cross-validation scores are 
growing gradually, reflecting that model performed well 
(Figure 20).   

The plot given in Figure 12 shows the combined 
metrics of models used in this study. The dominance of 
R2 metric is given in dark green. 
 
3.3 Prediction of Haversine distance 
 

The Extra Tress Regressor (et) performed better than 
other regressors like CatBoost, Extreme Gradient 

boosting, Light Gradient boosting machine, Random 
Forest, etc., predicting the Haversine distance variable. 
The ‘et’ regressor yielded an R2 value of 0.96 with MAE 
(4.235), MSE (47.2008), RMSE (6.7658), RMSLE 
(0.0008), and MAPE (0.0005), showing that the model 
fitted well and is shown in Figure 21 and model metrics 
are given in Figure 22. The outlier detection plot (7.22%) 
is shown in Figure 23. The feature importance plot 
showed that the F variable strongly influences 
prediction, followed by RSC, SO4, and Cl. SAR, Ca, NO3, Na, 
pH, and EC (Figure 24). The t-SNE Manifold showed that 
the values 8780, 8760, and 8740 of Haversine distance 
are quite different from others (Figure 25). The 
prediction error plot shows that the R2 value is 0.963 
with the best fit (Figure 26). The residuals plot showed a 
Train R2 and Test R2 of 1 and 0.963, respectively (Figure 
27). The RFECV plot showed a score of 0.969 (Figure 28). 
The validation curve showed that the cross-validation 
and training scores grew gradually, showing that the 
model fits well (Figure 29).  

The plot given in Figure 21 shows the combined 
metrics of models used in this study. The dominance of 
R2 metric along with other metrics is given. 

The evaluation metrics of all models considered in 
this study is given in Table 1.  
 

 
Table 1. Evaluation metrics. 

Model Latitude (R2) Longitude (R2) Haversine (R2) 

Extra Trees Regressor 0.9829 0.9697 0.9691 

CatBoost Regressor 0.9814 0.9532 0.9537 

Extreme Gradient Boosting 0.9691 0.9452 0.9427 

Light Gradient Boosting Machine 0.9682 0.9322 0.9326 

Gradient Boosting Regressor 0.9678 0.9072 0.9134 

Random Forest 0.9646 0.9047 0.913 

AdaBoost Regressor 0.9483 0.8322 0.8399 

Decision Tree 0.9287 0.8279 0.8261 

Linear Regression 0.9082 0.7606 0.7627 

Ridge Regression 0.9059 0.7604 0.7624 

Bayesian Ridge 0.9057 0.7579 0.76 

TheilSen Regressor 0.9057 0.7306 0.7413 

Random Sample Consensus 0.9049 0.7288 0.735 

K Neighbors Regressor 0.9043 0.6856 0.7309 

Elastic Net 0.8833 0.4237 0.6875 

Lasso Regression 0.8725 0.3684 0.6766 

Orthogonal Matching Pursuit 0.8467 0.3501 0.3658 

Support Vector Machine 0.8112 0.3093 0.121 

Lasso Least Angle Regression 0.6901 -0.0258 -0.001 

Least Angle Regression -0.0127 -4.799 -5.0102 

Huber Regressor -68.0315 -1740.73 -2006.42 

Passive Aggressive Regressor -554.398 -14405 -15444.1 
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Figure 3. Model contrast (Longitude). 

 

 
Figure 4. Model performance (Longitude). 

 

 
Figure 5. Outliers (Longitude). 
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Figure 6. Feature importance (Longitude). 

 

 
Figure 7. t-SNE Manifold (Latitude). 

 

 
Figure 8. Prediction error (Longitude). 
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Figure 9. Residuals (Longitude). 

 

 
Figure 10. RFECV (Longitude). 

 

 
Figure 11. Validation curve (Longitude). 
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Figure 12. Model contrast (Latitude). 

 
Figure 13. Model performance (Latitude). 

 

 
Figure 14. Outliers (Latitude). 
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Figure 15. Feature importance (Latitude). 

 

 
Figure 16. t-SNE Manifold (Latitude). 

 

 
Figure 17. Prediction error (Latitude). 
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Figure 18. Residuals (Latitude). 

 

 
Figure 19. RFECV (Latitude). 

 

 
Figure 20. Validation curve (Latitude). 
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Figure 21. Model contrast (Haversine distance). 

 

 
Figure 22. Model performance (Haversine distance). 

 

 
Figure 23. Outliers (Haversine distance). 
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Figure 24. Feature importance (Haversine distance). 

 

 
Figure 25. t-SNE Manifold (Haversine distance). 

 

 
Figure 26. Prediction error (Haversine distance). 
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Figure 27. Residuals (Haversine distance). 

 

 
Figure 28. RFECV (Haversine distance). 

 

 
Figure 29. Validation curve (Haversine distance). 
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4. Discussion 
 

The Extra Tress Regressor (et) performed better than 
other regressors i.e., CatBoost, Extreme Gradient 
boosting, Light Gradient boosting machine, Gradient 
boosting regressor, etc., predicting the Longitude 
variable. The ‘et’ regressor yielded an R2 value of 0.96 
reflecting that the model fitted well. Fluoride has more 
influence than other variables i.e., RSC, Cl, SO4, SAR, NO3, 
Na, Ca, EC and pH.  The Extra Tress Regressor (et) 
responded well in predicting the Latitude variable. The 
‘et’ regressor yielded an R2 value of 0.98 showing that the 
model fitted well. The SAR highly influenced the 
prediction, followed by Na, TH, Ca, Mg, SO4, NO3, EC, Cl, 
and RSC.  The Extra Tress Regressor (et) performed 
better than other regressors in predicting the Haversine 
distance. The ‘et’ regressor yielded an R2 value of 0.96 
reflecting that the model fitted well. Fluoride strongly 
influenced prediction, followed by RSC, SO4, and Cl. SAR, 
Ca, NO3, Na, pH, and EC.  The present observations 
obtained through this study suggests that the 
groundwater quality variables if collected at large from 
several points will aid in solving some of the navigation 
problems when there is no network and if satellite relay 
systems are impaired due to solar storms. This work 
shows that the prediction accuracy of the geolocation can 
be effectively improved if more data related with 
groundwater quality is available.  The works cited in the 
introduction section may be viewed to know the 
navigation challenges. Though artificial networks and 
deep learning frameworks were used in estimation of 
groundwater and watershed components, the location-
based applications were less studied and this work will 
add some information in this research area. AutoML tools 
like H2O can be used across various areas of scientific 
studies and cloud-based analytics can also aid us in 
lowering the cost of research.  

 

5. Conclusion  
 

This work aimed to predict latitude, longitude, and 
haversine distance, and it is concluded that the Extra 
Trees Regressor model performed better than other 
models in all the three cases. This work can be used in 
various applications and preferably larger datasets with 
location components. This research helps solve location-
based problems if for any reason satellite-based 
navigation becomes impaired due to unpredictable 
natural disasters. The present work can be also used to 
address several issues that helps in both ways i.e., in 
understanding the role of groundwater quality variables 
in locational intelligence and vice versa. Through the 
evolution of artificial intelligence and cloud-based 
analytics, the cost of understanding the local hydrology 
has drastically reduced, however the field-based 
investigations are still consuming excess human labor 
and money. The researchers in the fields of hydrology, 
pollution, and GIS can get benefitted from this work.  
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