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Abstract
Fixed-figure problem has been introduced as a generalization of fixed circle problem and investigated a
geometric generalization of fixed point theory. In this sense, we prove new fixed-figure results with some
illustrative examples on metric spaces. For this purpose, we use KMK-type contractions, that is, Kannan
type and Meir-Keeler type contractions.

Keywords: Fixed figure; fixed point; KMK-type contraction; metric space.

AMS Subject Classification (2020): Primary: 54H25 ; Secondary: 47H09; 47H10.

*Corresponding author

1. Introduction
In recent years, fixed-point theory has been generalized using the geometric approaches. For this purpose, fixed-

circle problem has been occurred as a geometric generalization to the fixed-point theory when the self-mapping
T : X→ X has more than one fixed point [1]. In many studies, there are different solutions to this problem with
applications on metric and some generalized metric spaces (for example, see [2], [3], [4], [5], [6], [7], [8] and [9]).
After than, this problem has been extended to fixed-figure problem [10]. For this problem, the following notions
were defined (see [11], [12], [1] and [10]).

Let (X, d) be a metric space, T : X→ X a self-mapping and x0, x1, x2 ∈ X, r ∈ [0,∞). Then,
(a) the circle Cx0,r is defined by

Cx0,r = {x ∈ X : d(x, x0) = r} .

(b) the disc Dx0,r is defined by
Dx0,r = {x ∈ X : d(x, x0) ≤ r} .

(c) the ellipse Er(x1, x2) is defined by

Er(x1, x2) = {x ∈ X : d (x, x1) + d (x, x2) = r} .
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(d) the hyperbola Hr(x1, x2) is defined by

Hr(x1, x2) = {x ∈ X : |d (x, x1)− d (x, x2)| = r} .

(e) the Cassini curve Cr(x1, x2) is defined by

Cr(x1, x2) = {x ∈ X : d (x, x1) d (x, x2) = r} .

(f) the Apollonius circle Ar(x1, x2) is defined by

Ar(x1, x2) =

{
x ∈ X− {x2} :

d (x, x1)

d (x, x2)
= r

}
.

(g) the k-ellipse E [x1, x2, . . . , xk; r] is defined by

E [x1, x2, . . . , xk; r] =

{
x ∈ X :

k∑
i=1

d (x, xi) = r

}
.

A geometric figure F contained in the fixed point set Fix (T) = {x ∈ X : x = Tx} is called a fixed figure (a fixed
circle, a fixed disc, a fixed ellipse, a fixed hyperbola, a fixed Cassini curve, etc.) of the self-mapping T (see [10]).
Some fixed-figure results were obtained using different aspects (see [13], [11], [12], [3], [10], [14] and [15] for more
details).

In this paper, we investigate some solutions to the fixed-figure problem on metric spaces. To do this, we modify
the Kannan type and Meir-Keeler type contractions used in the fixed-point theorems. We give some illustrative
examples related to the proved fixed-figure results.

2. Main results
In this section, we present some solutions to the fixed-figure problem using Kannan type (see [16] and [17]) and

Meir-Keeler type (see [18]) contractions on metric spaces. To do this, we inspire the used approaches in [19] and
[20].

In the sequel, let T : X→ X be a self-mapping of a metric space (X, d) and the number r defined as

r = inf {d(x,Tx) : x /∈ Fix(T)} . (2.1)

Also, in the examples of this section, we use the usual metric d.
The following theorem can be considered as a new fixed-disc or fixed-circle theorem.

Theorem 2.1. If there exist x0 ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ
[d(x, x0)]

1−γ
<

r

2
+ δ(r) =⇒ d(Tx, x0) ≤ r,

for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) < [d(x,Tx0)]
γ
[d(x0,Tx)]

1−γ ,

for all x ∈ X− Fix(T), then we have
(i) x0 ∈ Fix(T),
(ii) Dx0,r ⊆ Fix(T),
(iii) Cx0,r ⊆ Fix(T).

Proof. (i) Let x0 ∈ X− Fix(T). Using the condition (b), we have

1 ≤ d(x0,Tx0) < [d(x0,Tx0)]
γ
[d(x0,Tx0)]

1−γ
= d(x0,Tx0),

a contradiction. So it should be x0 ∈ Fix(T).
(ii) If r = 0, then we have Dx0,r = {x0} and from the condition (i), we get Dx0,r ⊆ Fix(T).
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Let r > 0 and x ∈ Dx0,r such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) < [d(x,Tx0)]
γ
[d(x0,Tx)]

1−γ (2.2)

and by the condition (a), we have
r

2
< [d(x,Tx)]

γ
[d(x, x0)]

1−γ
<

r

2
+ δ(r) =⇒ d(Tx, x0) ≤ r. (2.3)

If we combine the inequalities (2.2) and (2.3), we obtain

1 ≤ d(x,Tx) < [d(x,Tx0)]
γ
[d(x0,Tx)]

1−γ ≤ r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get Dx0,r ⊆ Fix(T).
(iii) It can be easily seen that Cx0,r ⊆ Fix(T) since Cx0,r is a boundary of Dx0,r.

Example 2.1. Let X = {−1, 0, 1, 2}. Define the self-mapping T : X→ X as

Tx =

(
−1 0 1 2
−1 0 1 1

)
,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.1 for x0 = 0, γ = 1
2 and δ(r) = 2. Also, we have

r = inf {d(x,Tx) : x = 2} = 1

and
Fix(T) = {−1, 0, 1}

Consequently, 0 ∈ Fix(T), D0,1 = {−1, 0, 1} ⊆ Fix(T) and C0,1 = {−1, 1} ⊆ Fix(T).

Theorem 2.2. If there exist x1, x2 ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x, T x)]

γ
[d(x, x1) + d(x, x2)]

1−γ
<

r

2
+ δ(r)

=⇒ d(Tx, x1) + d(Tx, x2) ≤ r,

for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) < [d(x,Tx1) + d(x,Tx2)]
γ
[d(x1,Tx) + d(x2,Tx)]

1−γ ,

for all x ∈ X− Fix(T),
(c) x1, x2 ∈ Fix(T),

then we have
Er(x1, x2) ⊆ Fix(T).

Proof. Let r = 0. Then we have Er(x1, x2) = {x1} = {x2}. From the condition (c), we get

Er(x1, x2) ⊆ Fix(T).

Let r > 0 and x ∈ Er(x1, x2) such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) < [d(x,Tx1) + d(x,Tx2)]
γ
[d(x1,Tx) + d(x2,Tx)]

1−γ (2.4)

and by the condition (a), we have
r

2
< [d(x,Tx)]

γ
[d(x, x1) + d(x, x2)]

1−γ
<

r

2
+ δ(r) (2.5)

=⇒ d(Tx, x1) + d(Tx, x2) ≤ r.

If we combine the inequalities (2.4) and (2.5), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

Er(x1, x2) ⊆ Fix(T).
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Example 2.2. Let X = {−1, 1, 2, 3}. Define the self-mapping T : X→ X as

Tx =

(
−1 1 2 3
−1 1 2 1

)
,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.2 for x1 = −1, x2 = 1, γ = 1
2 and δ(r) = 2. Also, we have

r = inf {d(x,Tx) : x = 3} = 2

and
Fix(T) = {−1, 1, 2}

Consequently, −1, 1 ∈ Fix(T) and E2(−1, 1) = {−1, 1} ⊆ Fix(T).

Theorem 2.3. If there exist x1, x2 ∈ X, γ ∈ (0, 1) and r > 0 such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ |d(x, x1)− d(x, x2)|1−γ <
r

2
+ δ(r)

=⇒ |d(Tx, x1)− d(Tx, x2)| ≤ r,

for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) < |d(x,Tx1)− d(x,Tx2)|
γ |d(x1,Tx)− d(x2,Tx)|1−γ ,

for all x ∈ X− Fix(T),
(c) x1, x2 ∈ Fix(T),

then we have
Hr(x1, x2) ⊆ Fix(T).

Proof. Let x ∈ Hr(x1, x2) such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) < |d(x,Tx1)− d(x,Tx2)|
γ |d(x1,Tx)− d(x2,Tx)|1−γ (2.6)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ |d(x, x1)− d(x, x2)|1−γ <
r

2
+ δ(r) (2.7)

=⇒ |d(Tx, x1)− d(Tx, x2)| ≤ r.

If we combine the inequalities (2.6) and (2.7), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

Hr(x1, x2) ⊆ Fix(T).

Example 2.3. Let X =
{
−1, 121, 2,

5
2 , 3, 4

}
. Define the self-mapping T : X→ X as

Tx =

(
−1 1

2 1 2 5
2 3 4

−1 5
2 1 2 5

2 3 4

)
,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.3 for x1 = −1, x2 = 1, γ = 1
3 and δ(r) = 2. Also, we have

r = inf

{
d(x,Tx) : x =

1

2

}
= 2

and

Fix(T) =

{
−1, 1, 2, 5

2
, 3, 4

}
Consequently, −1, 1 ∈ Fix(T) and H2(−1, 1) =

{
−1, 1, 2, 52 , 3, 4

}
⊆ Fix(T).
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Theorem 2.4. If there exist x1, x2 ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ
[d(x, x1)d(x, x2)]

1−γ
<

r

2
+ δ(r)

=⇒ d(Tx, x1)d(Tx, x2) ≤ r,

for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) < [d(x,Tx1)d(x,Tx2)]
γ
[d(x1,Tx)d(x2,Tx)]

1−γ ,

for all x ∈ X− Fix(T),
(c) x1, x2 ∈ Fix(T),

then we have
Cr(x1, x2) ⊆ Fix(T).

Proof. Let r = 0. Then we have Cr(x1, x2) = {x1} = {x2}. From the condition (c), we get

Cr(x1, x2) ⊆ Fix(T).

Let r > 0 and x ∈ Cr(x1, x2) such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) < [d(x,Tx1)d(x,Tx2)]
γ
[d(x1,Tx)d(x2,Tx)]

1−γ (2.8)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ
[d(x, x1)d(x, x2)]

1−γ
<

r

2
+ δ(r) (2.9)

=⇒ d(Tx, x1)d(Tx, x2) ≤ r.

If we combine the inequalities (2.8) and (2.9), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

Cr(x1, x2) ⊆ Fix(T).

Example 2.4. Let X =
{
−
√
3,−1, 0, 1,

√
3, 2
}

. Define the self-mapping T : X→ X as

Tx =

(
−
√
3 −1 0 1

√
3 2

−
√
3 1 0 1

√
3 0

)
,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.4 for x1 = −1, x2 = 1, γ = 8
9 and δ(r) = 4. Also, we have

r = inf

{
d(x,Tx) : x =

1

2

}
= 2

and
Fix(T) =

{
−
√
3,−1, 0, 1,

√
3
}

Consequently, −1, 1 ∈ Fix(T) and C2(−1, 1) =
{
−
√
3,
√
3
}
⊆ Fix(T).

Theorem 2.5. If there exist x1, x2 ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ

[
d(x, x1)

d(x, x2)

]1−γ
<

r

2
+ δ(r) =⇒ d(Tx, x1)

d(Tx, x2)
≤ r,
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for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) <

[
d(x,Tx1)

d(x,Tx2)

]γ [
d(x1,Tx)

d(x2,Tx)

]1−γ
,

for all x ∈ X− Fix(T),
(c) x1, x2 ∈ Fix(T),

then we have
Ar(x1, x2) ⊆ Fix(T).

Proof. Let r = 0. Then we have Ar(x1, x2) = {x1} = {x2}. From the condition (c), we get

Ar(x1, x2) ⊆ Fix(T).

Let r > 0 and x ∈ Ar(x1, x2) such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) <

[
d(x,Tx1)

d(x,Tx2)

]γ [
d(x1,Tx)

d(x2,Tx)

]1−γ
(2.10)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ

[
d(x, x1)

d(x, x2)

]1−γ
<

r

2
+ δ(r) =⇒ d(Tx, x1)

d(Tx, x2)
≤ r. (2.11)

If we combine the inequalities (2.10) and (2.11), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

Ar(x1, x2) ⊆ Fix(T).

Example 2.5. Let X =
{
−1, 0, 13 , 1, 2, 3

}
. Define the self-mapping T : X→ X as

Tx =

(
−1 0 1

3 1 2 3
−1 0 1

3 1 0 3

)
,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.5 for x1 = −1, x2 = 1, γ = 8
9 and δ(r) = 4. Also, we have

r = inf

{
d(x,Tx) : x =

1

2

}
= 2

and

Fix(T) =

{
−1, 0, 1

3
, 1, 3

}
Consequently, −1, 1 ∈ Fix(T) and A2(−1, 1) =

{
1
3 , 3
}
⊆ Fix(T).

Theorem 2.6. If there exist x1, x2, . . . xk ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ

[
k∑
i=1

d(x, xi)

]1−γ
<

r

2
+ δ(r)

=⇒
k∑
i=1

d(Tx, xi) ≤ r,

for all x ∈ X− Fix(T),
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(b)

1 ≤ d(x,Tx) <

[
k∑
i=1

d(x,Txi)

]γ [ k∑
i=1

d(Tx, xi)

]1−γ
,

for all x ∈ X− Fix(T),
(c) x1, x2, . . . xk ∈ Fix(T),

then we have
E [x1, x2, . . . , xk; r] ⊆ Fix(T ).

Proof. Let r = 0. Then we have E [x1, x2, . . . , xk; r] = {x1} = . . . = {xk}. From the condition (c), we get

E [x1, x2, . . . , xk; r] ⊆ Fix(T).

Let r > 0 and x ∈ E [x1, x2, . . . , xk; r] such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) <

[
k∑
i=1

d(x,Txi)

]γ [ k∑
i=1

d(Tx, xi)

]1−γ
(2.12)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ

[
k∑
i=1

d(x, xi)

]1−γ
<

r

2
+ δ(r) (2.13)

=⇒
k∑
i=1

d(Tx, xi) ≤ r.

If we combine the inequalities (2.12) and (2.13), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

E [x1, x2, . . . , xk; r] ⊆ Fix(T).

Example 2.6. Let X = {−1, 0, 1, 2}. Define the self-mapping T : X→ X as

Tx =

(
−1 0 1 2
−1 0 1 0

)
,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.6 for x1 = −1, x2 = 0, x3 = 1, γ = 1
2 and δ(r) = 4. Also,

we have

r = inf

{
d(x,Tx) : x =

1

2

}
= 2

and
Fix(T) = {−1, 0, 1}

Consequently, −1, 0, 1 ∈ Fix(T) and E[−1, 0, 1; 2] = {0} ⊆ Fix(T).

3. Conclusion and future works
This paper is an example of the geometric approaches to fixed-point theory. The aim of this paper is to gain new

solutions to the fixed-figure problem. For this paper, we use KMK-type contractions, that is, Kannan type and
Meir-Keeler type contractions on metric spaces. This problem can be studied with different approaches on both
metric spaces and some generalized metric spaces (for example, see [21], [22], [23] and the references therein).
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