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Highlights 

• This paper focuses on the theory of 𝑞-rung linear Diophantine fuzzy sets (𝑞-RLDFSs). 

• Similarity measure approaches are proposed for determining closeness between two 𝑞-RLDFSs. 

• A clustering algorithm based on the developed similarity measures of 𝑞-RLDFSs is constructed. 
 

Article Info 

 

Abstract 

The 𝑞-rung linear Diophantine fuzzy set is a recently developed tool to handle with uncertain and 

vague information in real-life issues and can be applied for reference parameter-based opinions. 

Similarity measures determine distance with dimensions that represent features of the objects. 

Despite the importance of exponential function-based similarity measures, there is no satisfactory 

formulation for 𝑞-rung linear Diophantine fuzzy sets in the literature. This paper proposes 

similarity measures based on exponential function for 𝑞-rung linear Diophantine fuzzy sets and 

thus presents the first formulas for calculating the similarity coefficient between two 𝑞-rung linear 

Diophantine fuzzy sets. The salient features of the new similarity measures are axiomatically 

addressed to ensure their good performance. Also, they are applied to the clustering problem and 

the results are analyzed. A comparative study is established and thus several advantages of the 

proposed similarity measures are discussed. 
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1. INTRODUCTION 

 

The fuzzy set theory has received increasing attention since its introduction by Zadeh [1]. By integrating 

the non-membership degree in this set structure, various fuzzy extensions have been developed including 

intuitionistic fuzzy set (IFS) [2], Pythagorean fuzzy set (PyFS) [3] and 𝑞-rung orthopair fuzzy set (𝑞-ROFS) 

[4]. These FS extensions have numerous implementations in various real-life areas. Petchimuthu et al. [5] 

derived mean operators and some generalised products for matrix forms of fuzzy sets. Kamacı [6] studied 

a new extended kind of IFSs and presented its real-life application. In 2019, Jamkhaneh [7] introduced the 

modified modal operators on generalized IFSs. Chauan et al. [8] focused on intuitionistic fuzzy metric 

spaces and presented fixed point theorems in this metric spaces. Peng et al. [9,10] detailed some theoretical 

findings and future directions for PyFSs. In [11,12], the authors enriched and refined the 𝑞-ROFSs in theory 

and practice. Akram et al. [13,14] and Liu et al. [15] interested in 𝑞-rung type extensions of FSs and 

proposed correlational decision making frameworks under these set structures. Some authors studied the 

different types of the similarity measures (SMs) for the IFSs, PyFSs and 𝑞-ROFSs [16-19]. Thus, they 

endeavored to measure the intuitionistic fuzzy information, the Pythagorean fuzzy information and the 𝑞-

rung orthopair fuzzy information. However, the above-mentioned FS extensions have their own constraints 

regarding membership degree and non-membership degree. To remove these constraints, Riaz and Hashmi 

[20] presented the idea of linear Diophantine fuzzy set (LDFS) by adding reference parameters. They 

argued that this idea eradicates the constraints of the present methodologies and the experts can freely 

determine the degrees without any constraints. Kamacı [21,22] derived some algebraic structures and 

complex forms of LDFSs.   
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In 2021, Almagrabi et al. [23] put forward that the sum of the reference parameters, where an alternative 

satisfies the attribute acquired by expert is wider than one, so LDFS fails to achieve his/her goal regarding 

reference parameters. Therefore, they proposed a novel generalization of LDFSs, named 𝑞-rung linear 

Diophantine fuzzy set (𝑞-RLDFS) and covered its vital properties. A 𝑞-RLDFS is superior to an LDFS 

because it is a 𝑞-RLDFS, but not conversely. The SM is an essential tool for measuring the uncertain 

information and is very useful in fields, such as clustering problem, multi-criteria decision making, game 

theory, pattern recognition, machine learning, medical diagnosis and etc.  

 

To the best of our knowledge, determining the closeness between two 𝑞-RLDFSs is a research gap in the 

literature that needs to be filled, and this contribution provides the evaluation of 𝑞-RLDF-based information 

in many fields. The motivation of this article is to propose similarity measure models that simultaneously 

account for the vague degrees and the reference parameters of 𝑞-RLDFS.  Following the above motivation, 

in this paper, exponential similarity measures (ESMs) of 𝑞-RLDFSs are developed. Also, new clustering 

models are created using these proposed ESMs, and then clustering problems are addressed in a modernize 

way. In practice, the calculation results of current similarity measures are prone to errors, hence good 

practice benefits are difficult to derive. Therefore, this paper focuses on new similarity measures based on 

exponential function (EF) and confirms that they can effectively handle the above-mentioned problem with 

comparative example and simulation situations.  

 

The rest of this paper is systematized as follows: In section 2, we review some fundamental concepts related 

to the LDFSs and 𝑞-RLDFSs. In section 3, we procure the EF-based SMs for 𝑞-RLDFSs and present some 

of their theoretical results. In section 4, a clustering algorithm (CA) based on the novel SMs of 𝑞-RLDFSs 

is elaborated and applied to the clustering problem. Section 5 is reserved for comparison analysis, followed 

by the conclusions in section 6. 

 

2. PRELIMINARIES 

 

In this part, we recall the concepts of LDFSs, 𝑞-RLDFSs and some fundamental 𝑞-RLDFS operations. 

 

In 2019, Riaz and Hashmi [20] proposed LDFS which is an extended forms of the IFS [2], PyFS [3] and 𝑞-

ROFS [4], by including the degrees of reference/control parameters to the degrees of membership and non-

membership. The concept of LDFS is given as follows. 

 

Definition 2.1. ([20]) An LDFS 𝔛 in the universe discourse set 𝔇 is defined as 

 

                                              𝔛 = {(𝑑𝑘, 〈Ψ𝔛(𝑑𝑘), Θ𝔛(𝑑𝑘)〉, 〈𝛼, 𝛽〉): 𝑑𝑘 ∈ 𝔇}                                          (2.1) 

  

where Ψ𝔛(𝑑𝑘), Θ𝔛(𝑑𝑘), 𝛼, 𝛽 ∈ [0,1] mean the grades of membership, non-membership and reference 

parameters of 𝑑𝑘 ∈ 𝔇 into the set 𝔛. These fulfill the restriction 0 ≤ 𝛼Ψ𝔛(𝑑𝑘) + 𝛽Θ𝔛(𝑑𝑘) ≤ 1 ∀ 𝑑𝑘 ∈

𝔇with 0 ≤ 𝛼 + 𝛽 ≤ 1. 

 

Riaz and Hashmi [20] asserted that the reference/control parameters can help to identify or describe a 

particular model. 

 

Almagrabi et al. [23] argued that in some real-life problems, the sum of the reference parameters might be 

larger than one, so LDFS cannot serve such purpose regarding reference parameters. To eliminate this 

contradiction, they described 𝑞-RLDFSs as follows. 

 

Definition 2.2. ([23]) A 𝑞-RLDFS �̌� in the universe discourse set 𝔇 is defined as 

 

                                            �̌� = {(𝑑𝑘 , 〈Ψ�̌�(𝑑𝑘), Θ�̌�(𝑑𝑘)〉, 〈𝛼, 𝛽〉): 𝑑𝑘 ∈ 𝔇}                                           (2.2) 
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where Ψ�̌�(𝑑𝑘), Θ�̌�(𝑑𝑘), 𝛼, 𝛽 ∈ [0,1] mean the grades of membership, non-membership and reference 

parameters of 𝑑𝑘 ∈ 𝔇 into the set �̌�, respectively. These fulfill the restriction 0 ≤ 𝛼𝑞Ψ�̌�(𝑑𝑘) +

𝛽𝑞Θ�̌�(𝑑𝑘) ≤ 1 ∀𝑑𝑘 ∈ 𝔇 with 0 ≤ 𝛼𝑞 + 𝛽𝑞 ≤ 1 where 𝑞 ≥ 1. For each element 𝑞-RLDFS �̌�, the 

component (〈Ψ�̌�(𝑑𝑘), Θ�̌�(𝑑𝑘)〉, 〈𝛼, 𝛽〉) is called a 𝑞-rung linear Diophantine fuzzy number (𝑞-RLDFN) 

and simply 𝑞-RLDFN can be represented as 𝜂 = (〈Ψ�̌�, Θ�̌�〉, 〈𝛼, 𝛽〉).The set of all 𝑞-RLDFNs on 𝔇 is 

denoted by 𝑞 − 𝑅𝐿𝐷𝐹𝑁(𝔇). It is obvious that 𝑞-RLDFS reduces to LDFS when 𝑞 = 1. Figure 1 presents 

the relationship between 𝑞-RLDFS and some existing fuzzy sets. 

 
Figure 1. Comparison view of q-RLDFS with some existing fuzzy sets 

 

Note that the reference/control parameters in the structure of 𝑞-RLDFS (or LDFS) are specified attributes, 

but their grades vary for each object in the universe discourse set 𝔇. The definition above may seem to 

imply that the grades of 𝛼 and 𝛽 are fixed for all objects, but they are not. To stress that the grades of 

reference parameters 𝛼 and 𝛽 for objects may vary and to better explain the notions in the next sections, 

the concept of 𝑞-LDFS is revisited as 

 

                                        𝔛 = {(𝑑𝑘 , 〈Ψ𝔛(𝑑𝑘), Θ𝔛(𝑑𝑘)〉, 〈𝛼𝔛(𝑑𝑘), 𝛽𝔛(𝑑𝑘)〉): 𝑑𝑘 ∈ 𝔇}                             (2.3) 

 

Definition 2.3. ([23]) Let  �̌�1 = {(𝑑𝑘 , 〈Ψ�̌�1(𝑑𝑘), Θ�̌�1(𝑑𝑘)〉, 〈𝛼�̌�1(𝑑𝑘), 𝛽�̌�1(𝑑𝑘)〉): 𝑑𝑘 ∈ 𝔇 } and �̌�2 

{(𝑑𝑘 , 〈Ψ�̌�2(𝑑𝑘), Θ�̌�2(𝑑𝑘)〉, 〈𝛼�̌�2(𝑑𝑘), 𝛽�̌�2(𝑑𝑘)〉): 𝑑𝑘 ∈ 𝔇 } be two 𝑞-RLDFSs in the universal discourse set 

𝔇. Then we have 

 

a) �̌�1 ⊆ �̌�2⟺Ψ�̌�1(𝑑𝑘) ≤ Ψ�̌�2(𝑑𝑘), Θ�̌�1(𝑑𝑘) ≥ Θ�̌�2(𝑑𝑘), 𝛼�̌�1(𝑑𝑘) ≤ 𝛼�̌�2(𝑑𝑘), 𝛽�̌�1(𝑑𝑘) ≥ 𝛽�̌�2(𝑑𝑘) 

for all 𝑑𝑘 ∈ 𝔇. 

 

b) �̌�1 = �̌�2⟺Ψ�̌�1(𝑑𝑘) = Ψ�̌�2(𝑑𝑘), Θ�̌�1(𝑑𝑘) = Θ�̌�2(𝑑𝑘), 𝛼�̌�1(𝑑𝑘) = 𝛼�̌�2(𝑑𝑘), 𝛽�̌�1(𝑑𝑘) = 𝛽�̌�2(𝑑𝑘) 

for all 𝑑𝑘 ∈ 𝔇. 

 

Definition 2.4. ([23]) Let 𝜂1 = (〈 Ψ
1

�̌�, Θ
1
�̌�〉, 〈 𝛼

1
�̌�, 𝛽

1
�̌�〉)and 𝜂2 = (〈 Ψ

2
�̌�, Θ

2
�̌�〉, 〈 𝛼

2
�̌�, 𝛽

2
�̌�〉) be two 𝑞-

RLDFNs in the universal discourse set 𝔇 and the scalar 𝜁 > 0 then the following characteristics are valid; 

 

a) 𝜂1⊕𝜂2 =

(

 
〈√( Ψ1 �̌�)

𝑞 + ( Ψ2 �̌�)
𝑞 − ( Ψ1 �̌�)

𝑞( Ψ2 �̌�)
𝑞

𝑞

, Θ1 �̌� Θ2 �̌�〉 ,

〈√( 𝛼1 �̌�)
𝑞 + ( 𝛼2 �̌�)

𝑞 − ( 𝛼1 �̌�)
𝑞( 𝛼2 �̌�)

𝑞
𝑞

, 𝛽1 �̌� 𝛽2 �̌�〉 )

 ; 𝑞 ≥ 1. 
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b) 𝜂1⊗𝜂2 =

(

 
〈 Ψ1 �̌� Ψ2 �̌�, √( Θ

1
�̌�)
𝑞 + ( Θ2 �̌�)

𝑞 − ( Θ1 �̌�)
𝑞( Θ2 �̌�)

𝑞
𝑞

〉

〈 𝛼1 �̌� 𝛼2 �̌�, √( 𝛽
1
�̌�)
𝑞 + ( 𝛽2 �̌�)

𝑞 − ( 𝛽1 �̌�)
𝑞( 𝛽2 �̌�)

𝑞
𝑞

〉
)

 ; 𝑞 ≥ 1. 

 

 

c) 𝜁𝜂1 = (〈√1 − (1 − ( Ψ
1

�̌�)
𝑞)𝜁

𝑞

, ( Θ1 �̌�)
𝜁〉 , 〈√1 − (1 − ( 𝛼1 �̌�)

𝑞)𝜁
𝑞

, ( 𝛽1 �̌�)
𝜁〉); 𝑞 ≥ 1. 

 

d) 𝜂1
𝜁
= (〈( Ψ1 �̌�)

𝜁 , √1 − (1 − ( Θ1 �̌�)
𝑞)𝜁

𝑞

〉 , 〈( 𝛼1 �̌�)
𝜁 , √1 − (1 − ( 𝛽1 �̌�)

𝑞)𝜁
𝑞

〉); 𝑞 ≥ 1. 

 

Definition 2.5. ([23]) Let 𝜂𝑖 = (〈 Ψ
𝑖
�̌�, Θ

𝑖
�̌�〉, 〈 𝛼

𝑖
�̌�, 𝛽

𝑖
�̌�〉) for 𝑖 ∈ 𝐼 be an assembling of 𝑞-RLDFNs in the 

universal discourse set 𝔇 and the weight vector 𝔴 = (𝔴1, 𝔴2, … ,𝔴𝑚)
𝑇 where 𝔴𝑖 ∈ (0,1] for all 𝑖 ∈ 𝐼 and 

∑ 𝔴𝑖
𝑚
𝑖=1 = 1. The transformation 𝑞 − 𝑅𝐿𝐷𝐹𝑊𝐴𝐴𝔴: 𝑞 − 𝑅𝐿𝐷𝐹𝑁(𝔇) → 𝑞 − 𝑅𝐿𝐷𝐹𝑁(𝔇) is termed to be a 

𝑞-rung linear Diophantine fuzzy weighted averaging aggregation (𝑞-RLDFWAA) operator and described 

as 

 

𝑞 − 𝑅𝐿𝐷𝐹𝑊𝐴𝐴𝔴(𝜂1, 𝜂2, … , 𝜂𝑚) = ∏ 𝔴𝑖
𝑚
𝑖=1 𝜂𝑖  

                                                     =

(

 
〈√1 −∏ (1 − Ψ

�̌�

𝑞𝑖 )𝔴𝑖𝑚
𝑖=1

𝑞
, ∏ ( Θ𝑖 �̌�)

𝔴𝑖𝑚
𝑖=1 〉 ,

 〈√1 − ∏ (1 − 𝛼
�̌�

𝑞𝑖 )𝔴𝑖𝑚
𝑖=1

𝑞
, ∏ ( 𝛽𝑖 �̌�)

𝔴𝑖𝑚
𝑖=1 〉

)

                              (2.4) 

where 𝑞 ≥ 1. 

 

3. EXPONENTIAL SIMILARITY MEASURES FOR 𝒒-RUNG LINEAR DIOPHANTINE FUZZY 

SETS 

 

In this part, we describe the similarity measures between two 𝑞-RLDFSs based on the exponential function 

(EF) and discuss their some properties. 

 

Since an EF 𝑒−𝜆 is decreasing when 𝜆 lies within [0,∞), its function value is (0,1]. If we consider 𝜆 as a 

distance measure between two objects based on the mathematical property of the EF 𝑒−𝜆 for 𝜆 ∈ [0,∞), 

we can describe the exponential similarity measures between the 𝑞-RLDFSs. 

 

Definition 3.1. Let �̌�1 and �̌�2 be two 𝑞-RLDFSs over 𝔇. Then, the exponential similarity measure (ESM) 

between two 𝑞-RLDFSs �̌�1 and �̌�2 is defined as 

 

                                 𝑆𝑒(�̌�1, �̌�2) =
1

𝑛
∑ 𝑒

−(
|Ψ�̌�1

(𝑑𝑘)−Ψ�̌�2
(𝑑𝑘)|+|Θ�̌�1

(𝑑𝑘)−Θ�̌�2
(𝑑𝑘)|

+|𝛼
�̌�1

𝑞 (𝑑𝑘)−𝛼�̌�2
𝑞 (𝑑𝑘)|+|𝛽�̌�1

𝑞 (𝑑𝑘)−𝛽�̌�2
𝑞 (𝑑𝑘)|

)
𝑛
𝑘=1 .                             (3.1) 

 

Proposition 3.2. Let �̌�1 and �̌�2 be two 𝑞-RLDFSs over 𝔇. Then, the proposed ESM 𝑆𝑒(�̌�1, �̌�2) satisfies 

the following features: 

 

i.0 < 𝑆𝑒(�̌�1, �̌�2) ≤ 1. 

ii.𝑆𝑒(�̌�1, �̌�2) = 1 if and only if �̌�1 = �̌�2. 

iii.𝑆𝑒(�̌�1, �̌�2) = 𝑆𝑒(�̌�2, �̌�1). 
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iv.If �̌�1 ⊆ �̌�2  ⊆ �̌�3 for the 𝑞-RLDFS �̌�3 then 𝑆𝑒(�̌�1, �̌�3) ≤ 𝑆𝑒(�̌�1, �̌�2) and 𝑆𝑒(�̌�1, �̌�3) ≤ 𝑆𝑒(�̌�2, �̌�3). 

 

Proof.  

i. It is clear that this property is valid. 

ii. ⇒: Let 𝑆𝑒(�̌�1, �̌�2) = 1. Considering Equation (3.1), we can say that 

𝑒
−(|Ψ�̌�1

(𝑑𝑘)−Ψ�̌�2
(𝑑𝑘)|+|Θ�̌�1

(𝑑𝑘)−Θ�̌�2
(𝑑𝑘)|+|𝛼�̌�1

𝑞 (𝑑𝑘)−𝛼�̌�1
𝑞 (𝑑𝑘)|+|𝛽�̌�1

𝑞 (𝑑𝑘)−𝛽�̌�1
𝑞 (𝑑𝑘)|) = 1. This implies that 

Ψ�̌�1(𝑑𝑘) = Ψ�̌�2(𝑑𝑘), Θ�̌�1(𝑑𝑘) = Θ�̌�2(𝑑𝑘), 𝛼�̌�1(𝑑𝑘) = 𝛼�̌�2(𝑑𝑘), 𝛽�̌�1(𝑑𝑘) = 𝛽�̌�2(𝑑𝑘) for each 𝑑𝑘 ∈ 𝔇 

since 𝑒0 = 1. Obviously, we deduce that �̌�1 = �̌�2. 

⇐: Let �̌�1 = �̌�2. By Definition 2.3, we have Ψ�̌�1(𝑑𝑘) − Ψ�̌�2(𝑑𝑘) = 0, Θ�̌�1(𝑑𝑘) − Θ�̌�2(𝑑𝑘) = 0, 

𝛼�̌�1(𝑑𝑘) − 𝛼�̌�2(𝑑𝑘) = 0 and 𝛽�̌�1(𝑑𝑘) − 𝛽�̌�2(𝑑𝑘) = 0 for all 𝑑𝑘 ∈ 𝔇. (It is clear that 𝛼
�̌�1

𝑞 (𝑑𝑘) − 𝛼�̌�2
𝑞 (𝑑𝑘) =

0 and 𝛽
�̌�1

𝑞 (𝑑𝑘) − 𝛽�̌�2
𝑞 (𝑑𝑘) = 0 for 𝑞 ≥ 1). Hence, we conclude that 𝑆𝑒(�̌�1, �̌�2) = 1. 

iii. This property is clear from Equation (3.1). 

iv. If �̌�1 ⊆ �̌�2  ⊆ �̌�3 then by using Definition 2.3, we calculate |Ψ�̌�1(𝑑𝑘) − Ψ�̌�3(𝑑𝑘)| ≥ |Ψ�̌�1(𝑑𝑘) −

Ψ�̌�2(𝑑𝑘)|, |Θ�̌�1(𝑑𝑘) − Θ�̌�3(𝑑𝑘)| ≥ |Θ�̌�1(𝑑𝑘) − Θ�̌�2(𝑑𝑘)|, |𝛼�̌�1(𝑑𝑘) − 𝛼�̌�3(𝑑𝑘)| ≥ |𝛼�̌�1(𝑑𝑘) − 𝛼�̌�2(𝑑𝑘)| 

and |𝛼�̌�1(𝑑𝑘) − 𝛼�̌�3(𝑑𝑘)| ≥ |𝛽�̌�1(𝑑𝑘) − 𝛽�̌�2(𝑑𝑘)| (i.e., |𝛼
�̌�1

𝑞 (𝑑𝑘) − 𝛼�̌�3
𝑞 (𝑑𝑘)| ≥ |𝛼�̌�1

𝑞 (𝑑𝑘) − 𝛼�̌�2
𝑞 (𝑑𝑘)| and 

|𝛽
�̌�1

𝑞 (𝑑𝑘) − 𝛽�̌�3
𝑞 (𝑑𝑘)| ≥ |𝛽�̌�1

𝑞 (𝑑𝑘) − 𝛽�̌�2
𝑞 (𝑑𝑘)|) for all 𝑑𝑘 ∈ 𝔇. Thus, we have 𝑆𝑒(�̌�1, �̌�3) ≤ 𝑆𝑒(�̌�1, �̌�2) 

since the EF 𝑒−𝜆 is decreasing for 𝜆 ∈ [0,∞). By using a similar technique, we can prove that 𝑆𝑒(�̌�1, �̌�3) ≤

𝑆𝑒(�̌�2, �̌�3). The proof is completed. 

 

Besides this, we can also describe generalized types of the ESM based on Equation (3.1) as follows. 

 

Definition 3.2. Let �̌�1 and �̌�2 be two 𝑞-RLDFSs over 𝔇. Then, the generalized exponential similarity 

measure (GESM) among the 𝑞-RLDFSs �̌�1 and �̌�2 is defined as  

 

                              𝑆𝑒
𝑝
(�̌�1, �̌�2) =

1

𝑛
∑ 𝑒

−(
|Ψ�̌�1

(𝑑𝑘)−Ψ�̌�2
(𝑑𝑘)|

𝑝
+|Θ�̌�1

(𝑑𝑘)−Θ�̌�2
(𝑑𝑘)|

𝑝

+|𝛼
�̌�1

𝑞 (𝑑𝑘)−𝛼�̌�2
𝑞 (𝑑𝑘)|

𝑝
+|𝛽

�̌�1

𝑞 (𝑑𝑘)−𝛽�̌�2
𝑞 (𝑑𝑘)|

𝑝)

𝑛
𝑘=1                              (3.2) 

 

for all 𝑝 ∈ ℕ = {1,2,… }. 
 

We observe that if we put 𝑝 = 1 in Definition 3.2 then the GESM reduces to the ESM (in Definition 3.1). 

That is, the ESM is a special form of the GESM.  

 

It is expected that Equation (3.2) for variations of values of 𝑝 can present many advantages in practice. 

 

Obviously, the GESM satisfies the properties (i-iv) in Proposition 3.2. 

 

In practical applications, one can consider different weights for the elements in the 𝑞-RLDFS. Suppose that 

the weight vector of the elements is 𝔴 = (𝔴1, 𝔴2, … ,𝔴𝑛)
𝑇 where 𝔴𝑘 ∈ (0,1] and ∑ 𝔴𝑘

𝑛
𝑘=1 = 1. Now, we 

can describe the weighted GESM for 𝑞-RLDFSs as follows. 

 

Definition 3.3. Let �̌�1 and �̌�2 be two 𝑞-RLDFSs over 𝔇. Then, the generalized exponential similarity 

measure (GESM) among the 𝑞-RLDFSs �̌�1 and �̌�2 is defined as  
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                           𝑆𝑒𝔴
𝑝
(�̌�1, �̌�2) = ∑ 𝔴𝑘  𝑒

−(
|Ψ�̌�1

(𝑑𝑘)−Ψ�̌�2
(𝑑𝑘)|

𝑝
+|Θ�̌�1

(𝑑𝑘)−Θ�̌�2
(𝑑𝑘)|

𝑝

+|𝛼
�̌�1

𝑞 (𝑑𝑘)−𝛼�̌�2
𝑞 (𝑑𝑘)|

𝑝
+|𝛽

�̌�1

𝑞 (𝑑𝑘)−𝛽�̌�2
𝑞 (𝑑𝑘)|

𝑝)

𝑛
𝑘=1                            (3.3) 

 

for all 𝑝 ∈ ℕ = {1,2,… }. 
 

Obviously, the weighted GESM satisfies the properties (i-iv) in Proposition 3.2. 

 

4. A CLUSTERING ALGORITHM BASED ON SIMILARITY MEASURES OF 𝒒-RUNG LINEAR 

DIOPHANTINE FUZZY SETS WITH APPLICATION  

 

In this part, we construct a clustering algorithm (CA) to illustrate the performance of SMs of 𝑞-RLDFSs 

and apply it to the clustering problem. 

 

The complete step-by-step procedure of 𝑞-rung linear Diophantine fuzzy clustering (𝑞-RLDFC) algorithm 

is given as follows. 

 

Algorithm (𝑞-RLDFC Algorithm) 

Input: Given a set of 𝑞-RLDFSs {�̌�1, �̌�2, … , �̌�𝑡} 

Output: Clusters of the 𝑞-RLDFSs 

Step 1: Calculate 𝑆𝑒
𝑝
(�̌�𝑟, �̌�𝑠) for each 𝑟, 𝑠 (𝑟 ≠ 𝑠)  

             (If there are weights, then calculate 𝑆𝑒𝔴
𝑝
(�̌�𝑟, �̌�𝑠)) 

Step 2: Fuse two clusters with greater similarity coefficient 

(The procedure is repeated time and again until the desirable number of clusters is achieved. Only 

two clusters can be fused in each stage and they cannot be separated after they are fused) 

Step 3: Compute the average (𝔄) of each cluster obtained in Step 2 by using Equation (2.4) 

Step 4: Compare each cluster with the other clusters by using the (weighted) GESM 

Step 5: Cluster the 𝑞-RLDFSs into the different clusters 

 

The 𝑞-RLDFC Algorithm is used to deal with clustering problems as discussed in the example below. 

 

Example 4.1. We consider the experimental data for five cars  ℭ1, ℭ2, ℭ3, ℭ4 and ℭ5. The performance of 

the each car is determined by the four features with low cost 𝑓1: design, 𝑓2: comfort, 𝑓3: safety, and 𝑓4: 
aerodynamic. It is obvious that there is a cost to have each feature in the car. Therefore, we consider these 

four features with low cost. For the construction of 𝑞-RLDFSs, we take the reference parameter as “price” 

(e.g., cheap and not cheap/expensive). That is, we consider the problem of obtaining the order of selection 

of cars under features associated with the reference parameter (price). Thus, the 𝑞-RLDFSs for each car are 

given as follows: 

 

ℭ1 = {
(𝑓1, 〈0.7,0.4〉, 〈0.5,0.7〉), (𝑓2, 〈0.3,0.6〉, 〈0.2,0.9〉),

(𝑓3, 〈0.9,0.6〉, 〈0.3,0.5〉), (𝑓4, 〈0.8,0.7〉, 〈0.7,0.8〉)
}, 

 

ℭ2 = {
(𝑓1, 〈0.5,0.8〉, 〈0.4,0.4〉), (𝑓2, 〈0.7,0.1〉, 〈0.6,0.3〉),
(𝑓3, 〈0.2,0.9〉, 〈0.3,0.7〉), (𝑓4, 〈0.3,0.3〉, 〈0.5,0.2〉)

}, 

 

ℭ3 = {
(𝑓1, 〈0.2,0.8〉, 〈0.4,0.6〉), (𝑓2, 〈0.9,0.7〉, 〈0.7,0.7〉),
(𝑓3, 〈0.5,0.1〉, 〈0.5,0.1〉), (𝑓4, 〈0.4,0.5〉, 〈0.6,0.3〉)

}, 
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ℭ4 = {
(𝑓1, 〈0.1,0.7〉, 〈0.3,0.1〉), (𝑓2, 〈0.6,0.4〉, 〈0.6,0.5〉),
(𝑓3, 〈0.4,0.5〉, 〈0.3,0.8〉), (𝑓4, 〈0.9,0.6〉, 〈0.9,0.5〉)

}, 

 

ℭ5 = {
(𝑓1, 〈0.6,0.6〉, 〈0.3,0.4〉), (𝑓2, 〈0.7,0.2〉, 〈0.5,0.5〉),
(𝑓3, 〈0.8,0.4〉, 〈0.6,0.2〉), (𝑓4, 〈0.9,0.0〉, 〈0.7,0.4〉)

}. 

 

Since 0.73 + 0.83 ≤ 1 we can take 𝑞 = 3. Also, we assume that the weight vector 𝔴 = (0.2,0.5,0.1,0.2)𝑇. 

Now, the steps of 𝑞-RLDFC Algorithm are discussed as below. 

 

In the first stage, each of the 𝑞-RLDFSs ℭ𝑟 (𝑟 = 1,2,3,4,5) is considered as a unique cluster 
{ℭ1}, {ℭ2}, {ℭ3}, {ℭ4}, {ℭ5}. 
 

Step 1: We calculate the weighted GESMs for 𝑝 = 2 (arbitrarily chosen) as in Table 1. 

 

Table 1. The weighted GESMs 𝑆𝑒𝔴
2  for 𝑝 = 2 

𝑆𝑒𝔴
2 (ℭ𝑟, ℭ𝑠) ℭ1 ℭ2 ℭ3 ℭ4 ℭ5 

ℭ1 null 0.496622 0.588173 0.616088 0.612765 

ℭ2 0.496622 null 0.708138 0.782837 0.844325 

ℭ3 0.588173 0.708138 null 0.76056 0.702033 

ℭ4 0.616088 0.782837 0.76056 null 0.80821 

ℭ5 0.612765 0.844325 0.702033 0.80821 null 

 
Step 2: From Table 1, 𝑆𝑒𝔴

2 (ℭ2, ℭ5) = 0.844325 is the greater similarity coefficient than the others. Hence, 

we fuse the clusters {ℭ2}  and {ℭ5}. Then, the 𝑞-RLDFSs ℭ𝑟 (𝑟 = 1,2,3,4,5) clusters into the four clusters 

at this stage 

 

{ℭ1}, {ℭ2, ℭ5}, {ℭ3}, {ℭ4}. 

 

Note that 𝑆𝑒𝔴
2 (ℭ5, ℭ4) = 0.80821 >  𝑆𝑒𝔴

2 (ℭ3, ℭ4) = 0.76056 >  𝑆𝑒𝔴
2 (ℭ4, ℭ5) = 0.616088. Then, {ℭ5} is 

the best option for fusing {ℭ4}. But {ℭ2} is the best option for fusing {ℭ5} since 𝑆𝑒𝔴
2 (ℭ2, ℭ5) = 0.844325 >

 𝑆𝑒𝔴
2 (ℭ4, ℭ5) = 0.80821. At this stage, fusing {ℭ4} with {ℭ3} is not reasonable considering the similarity 

coefficients.  

 

Step 3: The average of each cluster employing Equation (2.4) are calculated as follows: 

𝔄(ℭ1) = ℭ1 , 𝔄(ℭ3) = ℭ3,   𝔄(ℭ4) = ℭ4 and  

 

𝔄(ℭ2, ℭ5) = 𝑞 − 𝑅𝐿𝐷𝐹𝑊𝐴𝐴𝔴(ℭ2, ℭ5) = {
(𝑓1, 〈0.42, 0.86〉, 〈0.26, 0.69〉), (𝑓2, 〈0.7, 0.14〉, 〈0.56, 0.39〉),

(𝑓3, 〈0.41, 0.9〉, 〈0.3, 0.82〉), (𝑓4, 〈0.62, 0〉, 〈0.47, 0.6〉)          
}. 

 

Step 4: We equate each cluster with the other clusters by using the weighted GESM 𝑆𝑒𝔴
2  as follows. 

 

                𝑆𝑒𝔴
2 (𝔄(ℭ1),𝔄(ℭ2, ℭ5)) = 0.5245666, 𝑆𝑒𝔴

2 (𝔄(ℭ1),𝔄(ℭ3)) = 0.5881731,

                𝑆𝑒𝔴
2 (𝔄(ℭ1),𝔄(ℭ4)) = 0.6160884, 𝑆𝑒𝔴

2 (𝔄(ℭ2, ℭ5), 𝔄(ℭ3)) = 0.6817248,

                𝑆𝑒𝔴
2 (𝔄(ℭ2, ℭ5),𝔄(ℭ4)) = 0.7896134, 𝑆𝑒𝔴

2 (𝔄(ℭ3),𝔄(ℭ4)) = 0.7605597.      

 

Since 𝑆𝑒𝔴
2 (𝔄(ℭ2, ℭ5), 𝔄(ℭ4)) = 0.7896134 is the greater similarity coefficient than the others, we fuse 

the clusters {ℭ2, ℭ5}  and {ℭ4}. Then, the 𝑞-RLDFSs ℭ𝑟(𝑟 = 1,2,3,4,5) are clustered into the three clusters 

at this stage 
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{ℭ1}, {ℭ2, ℭ4, ℭ5}, {ℭ3}. 
 

Also, we note that 𝑆𝑒𝔴
2 (𝔄(ℭ3),𝔄(ℭ4)) > 𝑆𝑒𝔴

2 (𝔄(ℭ2, ℭ5),𝔄(ℭ3)) > 𝑆𝑒𝔴
2 (𝔄(ℭ1),𝔄(ℭ3)). 

Repeating Step 3 and Step 4, we obtain  𝑆𝑒𝔴
2 (𝔄(ℭ1),𝔄(ℭ2, ℭ4, ℭ5)) = 0.4958683, 𝑆𝑒𝔴

2 (𝔄(ℭ1),𝔄(ℭ3)) =

0.5881731 and   𝑆𝑒𝔴
2 (𝔄(ℭ2, ℭ4, ℭ5), 𝔄(ℭ3)) = 0.6678252. 

Since 𝑆𝑒𝔴
2 (𝔄(ℭ2, ℭ4, ℭ5),𝔄(ℭ3)) = 0.6678252 is the greater similarity coefficient than the others, we fuse 

the clusters {ℭ2, ℭ4, ℭ5}  and {ℭ3}. Then, the 𝑞-RLDFSs ℭ𝑟 (𝑟 = 1,2,3,4,5) are clustered into the two 

clusters at this stage 

 {ℭ1}, {ℭ2, ℭ3, ℭ4, ℭ5}. 

Lastly, the two clusters presented above are clustered into a unique cluster as    

{ℭ1, ℭ2, ℭ3, ℭ4, ℭ5}. 

The above clustering processes of cars by our proposed 𝑞-RLDFC Algorithm using 𝑆𝑒𝔴
2  can be illustrated 

as in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The clustering tree of cars through the proposed q-RLDFC Algorithm 

 

The clustering processes of cars given in Example 4.1 for different values of 𝔴 and 𝑝 by using the proposed 

𝑞-RLDFC Algorithm can be illustrated as in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The clustering tree of cars through different 𝔴 and 𝑝 for Example 4.1 

 

 

 

 

𝖜 = (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟏, 𝟎. 𝟐)𝑻, 𝒑 = 𝟐 

 

{𝕮𝟐, 𝕮𝟑, 𝕮𝟒, 𝕮𝟓} 

{𝕮𝟏} {𝕮𝟐} {𝕮𝟓} {𝕮𝟒} {𝕮𝟑} 𝑺𝒕𝒂𝒈𝒆 𝟏 

{𝕮𝟐, 𝕮𝟓} 𝑺𝒕𝒂𝒈𝒆 𝟐 

{𝕮𝟐, 𝕮𝟒, 𝕮𝟓} 𝑺𝒕𝒂𝒈𝒆 𝟑 

𝑺𝒕𝒂𝒈𝒆 𝟒 

{𝕮𝟏, 𝕮𝟐, 𝕮𝟑, 𝕮𝟒, 𝕮𝟓} 𝑺𝒕𝒂𝒈𝒆 𝟓 

{𝕮𝟐, 𝕮𝟑, 𝕮𝟒} 

{𝕮𝟑, 𝕮𝟒} 

{𝕮𝟏,𝕮𝟑, 𝕮𝟓} 

{𝕮𝟐, 𝕮𝟒} 

𝑺𝒕𝒂𝒈𝒆 𝟑 

𝑺𝒕𝒂𝒈𝒆 𝟏 {𝕮𝟏} {𝕮𝟑} {𝕮𝟓} {𝕮𝟐} {𝕮𝟒} {𝕮𝟏} {𝕮𝟐} {𝕮𝟑} {𝕮𝟒} {𝕮𝟓} 

𝑺𝒕𝒂𝒈𝒆 𝟒 {𝕮𝟐,𝕮𝟑, 𝕮𝟒, 𝕮𝟓 } 

𝑺𝒕𝒂𝒈𝒆 𝟓 {𝕮𝟏, 𝕮𝟐,𝕮𝟑, 𝕮𝟒, 𝕮𝟓} {𝕮𝟏, 𝕮𝟐,𝕮𝟑, 𝕮𝟒, 𝕮𝟓} 

𝖜 = (𝟎. 𝟑, 𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟑)𝑻, 𝒑 = 𝟑 𝖜 = (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟏, 𝟎. 𝟐)𝑻, 𝒑 = 𝟔 

𝑺𝒕𝒂𝒈𝒆 𝟐 {𝕮𝟑, 𝕮𝟓} 
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5. SUPERIORITY AND COMPARATIVE ANALYSIS 

 

The 𝑞-RLDFSs cover the space of IFS, PFS, 𝑞-ROFS and LDFS. The 𝑞th power to parameters enlarges the 

ambit of membership and non-membership degrees. To demonstrate the superiority as well as the 

advantages of emerging SMs, we match their performance with those of some existing SMs 𝑆𝐻𝑌1,   𝑆𝑍 based 

on IFS, PyFS respectively and 𝑞-ROFC1, 𝑞-ROFC2 based on 𝑞-ROFS on some common data sets. Consider 

the intuitionistic fuzzy elements 𝑀 and 𝑁 from Case 1 to Case 4 in Table 2. From Table 2, we understand 

that the SM 𝑆𝐻𝑌1 [17] in IFSs is utilized between 𝑀 and 𝑁. The results are inconsistent since Case 3 and 

Case 4 are same. Since the space of PyFSs is larger than IFSs. It enables us to find the SM between 𝑀 and 

𝑁 by using the SM 𝑆𝑍 [19] in PyFSs. When Case 1 and Case 2 are considered, the result is inconsistent. 

Again, since the space of 𝑞-ROFSs is wider than IFSs, the SM between 𝑀 and 𝑁 is carried out by the SMs 

𝑞 − 𝑅𝑂𝐹𝐶𝑖 (𝑞 = 2) (𝑖 = 1, 2) [24] in 𝑞-ROFSs. The result is inconsistent as NaN (Not a Number) occurs 

for Case 1 and Case 2. It is clear that (𝛼, 𝛽), the number form of IFSs, PyFSs and 𝑞-ROFSs can be viewed 

as (0, 0, 𝛼, 𝛽), the number form of 𝑞-RLDFSs. It leads to find the SM between 𝑀 and 𝑁 by applying our 

proposed GESM 𝑆𝑒
𝑝

 for 𝑝 = 2. We get a convenient result as shown in Table 2. It proves that our proposed 

SM is superior than the existing SMs. 

 

Table 2. Comparison of the GESM 𝑆𝑒
𝑝
 for 𝑝 = 2 (Data in Table 3 in [25]) 

 

𝑀 

𝑁 

Case 1 

{(𝑥, 0.5, 0.5)} 
{(𝑥, 0, 0)} 

Case 2 

{(𝑥, 0.6, 0.4)} 
{(𝑥, 0, 0)} 

Case 3 

{(𝑥, 0, 0.87)} 
{(𝑥, 0.28, 0.55)} 

Case 4 

{(𝑥, 0.6, 0.27)} 
{(𝑥, 0.28, 0.55)} 

𝑆𝐻𝑌1 [17] 0.3333 0.25 0.5152 0.5152 

𝑆𝑍  [19] 0.5 0.5 0.5989 0.1696 

𝑞-ROFC1 (𝑞 = 2) [24] NaN NaN 0.999961 0.012599 

𝑞-ROFC2  (𝑞 = 2) [24] NaN NaN 0.999971 0.509326 

The GESM 𝑆𝑒
2 (𝑞 = 2) 0.6065307 0.5945205 0.5869592 0.5997754 

In this table, NaN means Not a Number. 

 

6. RESULTS 

 

In this paper, we proposed the SMs based on the EF to determine similarity among two 𝑞-RLDFSs. By 

using these developed SMs, we constructed a CA and addressed a real-life clustering problem in 𝑞-RLDF 

setting. In addition, we presented comparison results showing that the proposed SMs yield more convincing 

results than the existing SMs and can be applied to issues such as medical diagnosis and pattern recognition. 

In conclusion, the main contributions are reviewed and illustrated in the following. 

(1) The formulas of ESMs of 𝑞-RLDFs are established, and their desirable properties are studied. 

Meanwhile, several relations between the proposed SMs have also been elicited. 

(2) A comparison with several SMs in literature is offered in Table 2 to indicate the availability of the new 

SMs. 

 

We hope that the findings in this article will offer new perspectives to researchers addressing various real 

world issues. Our future venture is to explore new similarity, correlation, and distance measures based on 

𝑞-RLDFSs. Thus, we can further expand the application range of 𝑞-RLDFSs. 
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