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Abstract 

In this work, equations that govern axisymmetric incompressible turbulent flow for heat transfer 

calculations are derived assuming constant thermo-physical properties and a specific 

nondimensionalization scheme. Vector algebra is used for expanding vector form of governing 

equations in cylindrical coordinate system. Emphasis is on the derivatives of unit vectors according to 

azimuthal direction. Reynolds decomposition is used for separating time averaged terms and Reynolds 

Stress terms. Standard k-ϵ turbulence model is selected for solving closure problem due to the Reynolds 

stresses. Organization of the governing equations after model inputs is done explicitly. Also, parameters 

that constitute nondimensionalization scheme are given. Evaluations of the complete process are given. 

Two major aims of the work are presenting necessary equations explicitly and revealing some key steps 

for reorganization of the equations. It is also aimed to present novel illustrations in order to contribute 

comprehension of the concepts. 

 

Standart k-ϵ Modeli Temelinde Eksenel Simetrik Sıkıştırılamaz 
Türbülanslı Akış Isı Transferi için Boyutsuz Ana Denklemlerin Türetilmesi 

Anahtar kelimeler 

Eksenel Simetrik Akış; 

Silindirik Koordinatlar; 

k-ϵ Türbülans Modeli; 

Reynolds Bileşenlerine 

Ayırma. 

Öz 

Bu çalışmada, sabit termo-fiziksel özellikler kabul edilerek ve belirli bir boyutsuzlaştırma şeması 

kullanılarak, ısı transferi hesaplamaları için eksenel simetrik sıkıştırılamaz türbülanslı akışı yöneten ana 

denklemler türetilmiştir. Silindirik koordinat sisteminde ana denklemlerin vektör formlarının açılması 

için vektör cebri kullanılmıştır. Açısal doğrultuya göre birim vektörlerin türevleri üzerine vurgulama 

yapılmıştır. Zaman ortalamalı terimler ile Reynolds gerilmeleri terimlerinin ayrılması için Reynolds 

bileşenlerine ayırma yöntemi kullanılmıştır. Reynolds gerilmelerinden kaynaklanan kapama sorununu 

çözmek için standart k-ϵ türbülans modeli seçilmiştir. Model girdilerinden sonra ana denklemlerin 

düzenlenmesi açık olarak verilmiştir. Ayrıca boyutsuzlaştırma şemasını oluşturan parametreler 

verilmiştir. Bütün sürecin değerlendirmeleri verilmiştir. Çalışmanın iki ana amacı, gerekli denklemlerin 

açık olarak verilmesi ve denklemlerin düzenlenmesindeki bazı anahtar adımların ortaya konmasıdır. 

Ayrıca kavramların anlaşılmasına katkı sağlamak için özgün görsellerin sunumu amaçlanmıştır. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

Coordinate systems for spatial resolution of a flow 

field are very important in fluid mechanics and 

computational fluid dynamics (CFD). In finite volume 

method, for instance, variables are integrated over 

the control volumes according to the coordinate 

system. Although coordinate systems are not 

changing the ultimate and correct results after a 
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computational process, process itself can become 

chaotic with selection of a specific coordinate 

system and related approach. Literature has 

frequently uses index notation abbreviations or 

shorthand notations. Also, the basic examples are 

mostly on Cartesian coordinates. Therefore, in this 

work, an axisymmetric flow field in two dimensional 

cylindrical coordinates is considered for derivation 

of flow, turbulence modeling and energy equations 

from conservation laws in vector forms.  

Governing equations in fluid mechanics are well 

established over nearly two centuries. Their 

background is based on physics by conservation 

laws and they are expressed by mathematical 

models. These mathematical expressions are 

axioms. In other words, they cannot be validated 

mathematically but they are known. However, 

mathematic itself has a language and sometimes 

this language has differences in symbols for 

different fields. This changing mathematical 

alphabet sometimes leads to vast amount of 

writings for a single statement. In order to 

overcome this cumbersome situation, literature 

developed kind of abbreviation by notations such as 

“shorthand” notations, index notations and vector 

operators. As a side effect, users of this language 

can be mistaken for a step while extracting the 

compact notation to reach original statement. 

Equations of fluid mechanics are used and 

investigated by many disciplines and practitioners 

including mathematicians, physicists, and 

engineers. Accordingly, symbols, expressions, 

methods, applications and approaches differ and 

constitute a widespread field. Therefore, people 

dealing with fluid mechanics, especially people from 

industry and new practitioners can have problems 

for, let’s say, special arrangements such as 

coordinate systems. An example can be given as 

Computational Fluid Dynamics (CFD) governing 

equations in cylindrical coordinate systems.  

Cylindrical coordinates offer advantages for certain 

conditions and geometries such as axisymmetric 

flows, i.e. pipes, nozzles and such. A cylindrical 

surface can be defined only by changes in 

coordinates and no additional operations are 

needed for simple geometries. However, additional 

terms emerge in governing equations. Most of these 

terms are due to growing arc in positive radial 

direction, as it leads to a growing surface as in pipes. 

Nevertheless, finding or recognizing these extra 

terms is not straightforward. The main reason is 

using mathematical procedure, not physical 

reasoning, and missing details of operators and 

notations special to the coordinate system. Even so, 

correct form of operators can correct a lot of errors, 

in the absence of physical reasoning. Considering 

the capacity of modern literature resources, citable 

literature contributions about explicit mathematical 

expressions and their derivation processes can 

reduce mistakes. 

The major problem associated with deriving CFD 

governing equations for cylindrical coordinates is 

examples in reference books. Most of them are for 

Cartesian coordinates. Some resources use index 

notation or Einstein notation for abbreviation. 

However, preparing a recipe to extract equations in 

index notations to cylindrical coordinates is not seen 

logical and haven’t been encountered. Writing 

equations in cylindrical coordinates using vector 

forms seems to be the most appropriate one but 

one should pay attention to use correct operators 

because operators and operations change according 

to the coordinate systems. The final tool can be 

General Orthogonal Curvilinear Coordinates 

(GOCC). This tool can be very useful but still needs 

to have knowledge about vector operations. And 

sometimes become cumbersome. Also, it is hard to 

find all equation relations, especially for turbulent 

model equations. 

This work uses some well-known references 

alongside of new ones in order to write conservation 

expressions in cylindrical coordinates. Conservation 

expressions in vector form are written from 

Moukalled et al. (2016). This book is relatively new 

and includes computer codes for MATLAB and 

OpenFOAM. It also gives vector operations in 

necessary amount for fluid dynamics. Book of 

Anderson et al. is used for GOCC and Reynolds 

Decomposition (RD) (Anderson et al. 1984). For 

GOCC, book of Happel and Brenner is a more 

comprehensive resource (Happel and Brenner 

2012). Books of Versteeg and Malalasekera (2007), 

Patankar (1980) and Tennekeys and Lumley (1972) 

are used for the general frame. Of course, well 
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known reference of Launder and Spalding (1974) is 

used for k-ϵ method. 

In this work, governing equations are derived from 

vector forms by using vector operations for heat 

transfer and turbulent fluid flow of an 

incompressible fluid in 2D axisymmetric domain and 

cylindrical coordinates. RD is performed and 

equations are then written in non-dimensional 

form. Vector operations and simplifications special 

to the cylindrical coordinates are emphasized. 

Implications relating to the work are evaluated. A 

citable document is aimed for related audience by 

presenting explicit forms of equations and 

operations. 

 

 

2. Theory 

2.1 Expanding vector forms 

 

All symbols in the paper are given in a nomenclature 

after references section. Vectors are written in 

straight font while scalars are written italic. Also, 

parenthesis changes according to content. Round 

parenthesis (), square brackets [] and braces {} are 

used for scalars, vectors and tensors respectively. 

In the following, continuity, momentum and energy 

equations in vector form are given between (1)-(3) 

respectively.  

Vector dot product (shown with  symbol) is a 

special vector algebra operation. By vector dot 

product, vector components of one vector are 

multiplied with their corresponding parts of another 

vector. The dot product of two vectors returns a 

scalar.  

 v 0
t





+ =


 (1) 

   v vv f
t
 


+ =


 (2) 

( )  

   

v

v τ v f vs b V

e e
t

q q

 




+ =



− − + + +

 (3) 

For incompressible fluid, continuity equation 

becomes; 

v 0 =  (4) 

Force term of equation (2) can be expressed as (5) 

in the absence of gravity and other external sources. 

 f τs p= − +   (5) 

(5) contains surface forces in the absence of body 

forces. 

Shear stress tensor can be expressed in (6) for 

Newtonian fluids. 

( )  ( )
T

τ v+ v v I =   +   (6) 

Divergence of τ  is as following. 

  ( )( ) ( )
T

τ v+ v v   =    + 
 

 (7) 

When (4) is used with (6) and (7) in (2) and viscosity 

is assumed constant, the equation has the following 

form. 

    2v + vv vp
t
  


 = − + 


 (8) 

In energy equation, temperature is used in most 

studies as a primitive variable. Therefore, energy 

equation is modified as shown in (9) to have a form 

in terms of temperature. 

( )    

( )

( )
( )

v

ln
τ : v

ln

p

V

p

c T T k T
t

Dp
q

T Dt

 



 
+ =    

 
− +  +   

 (9) 

Double dot product in (9) produces viscous 

dissipation. With constant viscosity assumption, 

incompressibility and no additional heat generation, 

(9) reduces to (10). 

( )  vp pc T c T k T
t
 


 + =   + 

 (10) 

In order to extract equations (1)-(10) in cylindrical 

coordinates, operators and operations should be 

written in cylindrical coordinates. To do so, required 

vector operator and operations are given in Table 1. 

 
Table 1. List of required vectors, tensors, operators and 

operations. 
Vectors Tensors Operators Operations 

v  τ     

-  vv  
2  

:  

- - -   
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Velocity vector in cylindrical coordinates is given 

below. 

ˆ ˆ ˆv e e ex ru v w = + +  (11) 

Del operator can be converted from Cartesian 

coordinates to cylindrical coordinates by below 

procedure between (12) and (23). 

ˆ ˆ ˆe e ex y z
x y z

  
 = + +

  
 (12) 

Comparison of Cartesian and cylindrical coordinates 

is given in Figure 1 in a schematic manner. This 

figure does not only give axes but also compares 

spaces. 

Conversion of the coordinates follows below steps: 

2 2r z y= +  (13) 

1tan
y

z
 −=  (14) 

2 2 2 2

2 cos
cos

2

r z z z r

z r rz y z y





= = = = =

 + +
 (15) 

2 2 2 2

2 sin
sin

2

r y y y r

y r rz y z y





= = = = =

 + +
 (16) 

2

2 2 2 2 2

2

2 2 2

1

1

sin sin

y z y

z y z z y z

z

y r

rz y r



 

 − −
= =

 +
+

− − −
= = =

+

 (17) 

2

2 2 2 2 2

2

1 cos cos

1

z z r

y ry z z y r

z

  
= = = =

 +
+

 
(18) 

r

z z r z





    
= +

    
 (19) 

r

y y r y





    
= +

    
 (20) 

ˆ ˆ ˆe cos e sin ez r  = +  (21) 

ˆ ˆ ˆe sin e cos ey r  = +  (22) 

( )

( )

ˆ ˆi sin e cos e

ˆ ˆcos e sin e

r

r

r

x y r y

r

z r z






 




 



     
 = + + + 

     

    
+ − + 

    

 (23a) 

( )

( )

cos
ˆ ˆi sin e cos e sin

sin
ˆ ˆcos e sin e cos

r

r

x r r

r r






  




  



   
 = + + + 

   

  
+ − − 

  

 (23b) 

2

2

cos
ˆ ˆi sin e sin e

cos
ˆ ˆcos sin e cos e

sin
ˆ ˆcos e cos e

sin
ˆ ˆsin cos e sin e

r r

r r

x r r

r r

r r

r r

 

 


 




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


 




  



  
 = + +

  

 
+ +

 

 − 
+ +

 

 − 
− −

 

 (23c) 

1
ˆ ˆ ˆe e ex r

x r r




  
 = + +

  
 (23d) 

 
Figure 1. Schematic comparison of Cartesian and 

cylindrical coordinate systems. 

 
Writing del operator in cylindrical coordinates is 

very crucial because additional terms in governing 

equations emerge from partial derivation of 

azimuthal and radial unit vectors according to 

azimuthal direction. By mathematical expression; 

ˆ ˆe er 



=

  and 
ˆ ˆe -er




=

 . 

According to vector dot operation principle and del 

operator in cylindrical coordinates, continuity can 

be written as: 

1
v 0

u v w v

x r r r

  
 = + + + =

  
 (24) 

Newly emerging terms in del operator creates 

additional terms in continuity for cylindrical 
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coordinates. This is mainly due to the derivation 

according to the azimuthal direction. 

The second term in (8) is divergence of a tensor and 

forms a vector. 

 
1

ˆ ˆ ˆvv e e e

ˆ ˆ ˆ ˆ ˆ ˆe e e e e e

ˆ ˆ ˆ ˆ ˆ ˆe e e e e e

ˆ ˆ ˆ ˆ ˆ ˆe e e e e e

x r

x x x r x

r x r r r

x r

x r r

uu uv uw

vu vv vw

wu wv ww







   




  

  

  

   
 = + +    

+ + 
  
+ + + 
 
+ + +  

 (25a) 

When special care is paid on partial derivation of 

azimuthal and radial unit vectors according to 

azimuthal direction, (25a) can be written as (25b). 

 

2

ˆvv e

ê

ê

x

r

w
uu uv u

x r r

u uv
w

r r

w v
uv vv v w

x r r r

vv rw

r r

wv wv w
uw w

x r r r

w
w vw

r r




 










  

 



  




 


   
+ +   

  =
 
+ + 

 

    
+ + +    

 +
 
 + −
 

  
+ + +  

 +
  
+ + 

  

 
(25b) 

For the last term of (8), Laplacian operator should 

be written in cylindrical coordinates. This can be 

done by dot product of two del operators. 

1
ˆ ˆ ˆe e e

1
ˆ ˆ ˆe e e

x r

x r

x r r

x r r









   
  = + +    

   
+ +    

 (26a) 

2 2 2
2

2 2 2 2

1 1

r rx r r 

   
 = + + +

  
 (26b) 

Del operator itself is a vector. Therefore, dot 

product of a vector with del operator means a 

divergence and forms a scalar. Accordingly, 

Laplacian operator is a scalar operator. However, 

this scalar operator still contains partial derivative 

according to azimuthal direction and therefore 

yields additional terms comparing to its Cartesian 

counterpart. Accordingly, the last term of (8) can be 

expanded as following. 

 

2 2 2

2 2 2 2
2

1 1

v

ˆ ˆ ˆe e ex r

r rx r r

u v w 

 

     
+ + +  

    =  
 

+ +  

 (27a) 

2 2 2

2 2 2 2

2 2

2 2

2

2

2 2

2 2

2

1
ˆ ˆ ˆe e e

1
ˆ ˆ ˆe e e

1 1
ˆ ˆv e e

1
ˆ ˆ ˆe e e

1
ê

x x x

x r r

r r

u u u
x r r

u v v
r r x r

v v
r rr

w w w
r rx r

w
r

  





 
 

 

   
+ + 

   
 

   + + +
   
 
    

 = + +  
    

 
   

+ + +
  
 
   
+  

    

 (27b) 
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u u
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v v v

r rx r
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r r

w w

r r

w w w
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v v
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w w

r r





 


 

 



  
+ 

  
 

  + + 
 

   
+ + 

  
 

  = + + −
 
 

  
− − 

  

   
+ + 

  
 

 
 + + +

  
 
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 
 
 
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 
 
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 
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 
 
 
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 
 
 
 
 
 
 
 
 

  

 

(27c) 

At this phase, conservation of momentum can be 

divided into three considering its components in 

three directions. Nevertheless, three equations 

seem very complicated and can be reorganized in 

order to obtain a simpler form by using (24). When 

left side of the three momentum equations are 

rearranged, (24) appears in them and since (24) is 

equal to “0”, those terms vanish. 

Final forms are: 
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x-momentum; 

2 2 2

2 2 2 2

1

1 1

u u u w u p
u v

t x r r x

u u u u

r rx r r

 




    
+ + + = −

    

    
+ + + + 

   

 (28a) 

r-momentum; 

2

2 2 2

2 2 2 2

2 2

1

1

1 2

v v v w v w
u v

t x r r r

v v v

x r rp

r v w v

r r r r










   
+ + + −

   

   
+ + 

    = − +
   
 + − −

  

 (28b) 

θ-momentum; 

2 2 2

2 2 2 2

2 2

1

1 1

1 2

w w w w w wv
u v

t x r r r

w w w

x r rp

r w v w

r r r r






 



   
+ + + +

   

   
+ + 

    = − +
   
 + + −

  

 (28c) 

A scalar is obtained when vector operations are 

applied on energy equation (10). The final term, 

viscous dissipation, should be written from ( )τ : v . 

In order to extract (6), a tensor is formed as in (29). 

   
1

ˆ ˆ ˆ ˆ ˆ ˆv e e e e e ex r x ru w v
x r r

 


     
 = + + + +      

 (29a) 

 v

1 1 1

u v w

x x x

u v w

r r r

u v w w v

r r r r r  

   
   
 
    

 =  
   

 
  

 − +
    

 (29b) 

Transpose of (29b) can be written as (30). 

 
T

1

1
v

1

u u u

x r r

v v v w

x r r r

w w w v

x r r r







   
   
 
    

 = − 
   

 
  

 +
    

 (30) 

Therefore, stress tensor can be written as in (31). 

1

1
τ

1 1 1 1

u u v u w u

x x x r x r

u v v v w v w

r x r r r r r

u w v w w w v w v

r x r r r r r r r






   

      
+ + +      

 
       

= + + − 
      

 
     

 + − + + + +
       

 (31) 

( )τ : v  vector operation is simple but time and space 

consuming operation. Therefore, it is skipped here. 

However, some key steps can be summarized as; 

double dot product by doing dot product two times 

while paying attention to the order of the terms. 

This order causes unit vectors interact with partial 

derivatives and partial derivatives containing 

azimuthal direction changes unit vectors and 

creates new terms. The final form of ( )τ : v  is given 

in (32). 

( )

2 2 2

2

2 2 2 2 2

τ : v

1 1

2

1 1 1
2

1 1

u v w v u w u

x r r x r r x

v w v w v w w w v

r r r r r r r r r

u u w w v v

r r x r x r

 


  

 



            
+ + + +      

            
 
      

= + + + − −  
      

                
+ + + + + +           

                

2 2
w

r

 
 
 
 
 
 
 
 
  

+  
  

 
(32) 

Energy equation in terms of temperature in 

cylindrical coordinates is given explicitly in (33). 

2 2 2

2 2 2 2

2 2 2

2

2

1 1

1 1 1

2

1 1
2

1

p

T T T w T T T T T
u v

t x r r r rx r r

u v w v u w u v w

x r r x r r x r r

v w v w w w v

c r r r r r r r

u

r r


 

  



 

        
+ + + = + + + 

       

              
+ + + + +      

              
 
    

+ + + − −  
    

  
+ + 

 

2 2 2 2 2 2
1u w w v v w

x r x r r 

 
 
 
 
 
 
 
 
               

+ + + + +            
                

 

(33) 

For 2D steady axisymmetric constant viscosity case, 

governing equations for flow become as following, 

in respect to their presented order at the beginning 

of this section. 

Continuity equation; 

0
u v v

x r r

 
+ + =

 
 (34) 

x-momentum; 

2 2

2 2

1 1u u p u u u
u v

x r x r rx r




      
+ = − + + + 

     
 (35) 
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r-momentum; 

2 2

2 2 2

1 1v v p v v v v
u v

x r r r rx r r




      
+ = − + + + − 

     
 (36) 

Energy equation for 2D steady axisymmetric 

constant thermo-physical properties flow can be 

written with transient term since heat transfer can 

be transient while flow is steady due to the constant 

properties assumption. 

2 2

2 2

2 2 2 2 2

1

2
p

T T T T T T
u v

t x r r rx r

u v v u v u v

c x r x r r r x





      
+ + = + + 

     

                
 + + + + + +                            

 
(37a) 

2 2

2 2

1

p

T T T T T T
u v

t x r r r cx r




       
+ + = + + + 

     

 (37b) 

Final equations are checked by using GOCC. 

 

2.2 Reynolds decomposition 

 

The next step is to decompose governing equations 

into their time average and fluctuating parts and 

then again taking time average of the whole. The 

decomposition procedure is known as Reynolds 

Decomposition (RD). A schematic drawing is given in 

Figure 2 in order to explain decomposition. Since 

this work only considers incompressible flows, 

turbulent velocity component has only two parts; 

i.e. steady and fluctuating. 

 

 

Figure 2. Components of u velocity for decomposition. 

 

RD rules are given as following: 

0

t n

t

u

u
n

=

==


 
(38) 

u u u = −  (39) 

0

0
t n

t

u
=

=

 =  (40) 

0

0
t n

t

uu
=

=

 =  (41) 

0

0
t n

t

u u
=

=

    (42) 

0 0

t n

t

u u

u u
n

=

=

 

 = 


 
(43) 

When governing equations between (34)-(37) are 

decomposed with RD rules, fluctuating components 

of the diffusive parts vanish. Convective terms yield 

new double correlation fluctuating terms and 

source term in energy equation also yields a 

fluctuating clone of itself. 

Decomposition and time averaging steps of 

governing equations are given in (44)-(47). 

Continuity equation; 

( ) ( ) ( )
0

u u v v v v

x r r

   + +  +
+ + =

 
 (44a) 

0
u v v u v v

x r r x r r

     
+ + + + + =

   
 (44b) 

0
u v v

x r r

 
+ + =

 
 (44c) 

x-momentum; 

( )
( )

( )
( )

( ) ( ) ( )2

2

1 1

f

u u u u
v v u u

r x

p p u u u u
r

x r r r x




  +  +
 + + +

 

    +  +  + 
= − + +  

      

 (45a) 

 

 

 

𝑢  
 

𝑢   

𝑢′   
 

𝑢
 (

m
/s

) 
 

𝑡 (s) 
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2

2

2

2

1 1

1 1

f

f

u u u u
v u v u

r x r x

u u u u
v u v u

r x r x

p u u
r

x r r r x

p u u
r

x r r r x







   
 + + +

   

      
 + + + +

   

     
= − + +  

     

       
− + +  

     

 (45b) 

2

2

1

1

f

u u p
v u

r x x

u u u u
r v u

r r r r xx





  
+ = −

  

       
 + + − −  

     

 (45c) 

2

2

1 1

f

u u p u u
v u r

r x x r r r x

u u v v u u u u
v u u u

r r r x x x




       
+ = − + +  

       

                 
   − = − + = −    
         

 (45d) 

2

2

1 1

f

u u p u u
v u r

r x x r r r x

u v u u v u u v
u u

r x r x r




       
+ = − + +  

       

            
 − + − + = −  

     

 (45e) 

2

2

1 1

f

u u p u u
v u r

r x x r r r x

u u u v u v

x r r




       
+ = − + +  

       

       
− + +    

 (45f) 

r-momentum; 

( )
( )

( )
( )

( ) ( )( ) ( )2

2

1 1

f

v v v v
v v u u

r x

r v vp p v v

r r r r x




  +  +
 + + +

 

   +  +  +
 = − + + 

       

 (46a) 

( )

( )

2

2

2

2

1 1

1 1

f

f

v v v v
v u v u

r x r x

v v v v
v u v u

r x r x

rvp v

r r r r x

rvp v

r r r r x







   
 + + +

   

      
 + + + +

   

    
= − + +  

      

     
− + +  

      

 
(46b) 

( ) 2

2

1

1

f

v v p
v u

r x r

rv v v v
v u

r r r r xx





  
+ = −

  

       
 + + − −  

      

 (46c) 

( ) 2

2

1 1

f

rvv v p v
v u

r x r r r r x

v v v v v u v u
v v u v

r r r x x x




      
+ = − + +  

        

                
   − = − + = −    
          

 (46d) 

( ) 2

2

1 1

f

rvv v p v
v u

r x r r r r x

v v u v u v v v
v v

r x x r r




      
+ = − + +  

        

            
 − + − − = −  

      

 (46e) 

( ) 2

2

1 1

f

rvv v p v
v u

r x r r r r x

v v u v v v

r x r




      
+ = − + +  

        

       
− + +    

 (46f) 

Only final form of the energy equation is given 

below since above steps are repeated. 

2

2

1

p p

T T T T T
v u r

t r x r r r x

u T v T T v

x r r c c





 

       
+ + = +  

       

        
− + + + + 

   

 (47) 

 

2.3 Turbulence modeling 

 

In order to reduce number of unknowns in RD 

equations between (44)-(47), turbulence viscosity 

modeling can be used. For the present case, 

following modeling statements are written. 

2

3
T

u u
u u k

x x


  
 − = + − 

  
 (48) 

2

3
T

v v
v v k

r r


  
 − = + − 

  
 (49) 

T

u v
u v v u

r x


  
   − = − = + 

  
 (50) 
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with 

T

T

T





=

 and 0.9T =  

T

T
u T

x



 − =


 (51) 

T

T
v T

r



 − =


 (52) 

(48)-(52) is written in (44)-(47) to give modeled 

equations for turbulent flow. Continuity equation is 

not written again because it does not contain 

fluctuating variables. Also, turbulent kinetic energy 

terms are absorbed in pressure terms. Residual 

turbulent kinetic energy term in radial momentum 

equation vanishes by reorganizing the equation. 

Reorganization also changes some terms due to 

continuity. 

x-momentum; 

2

2

1 1

2
2

3

1

f

T T

T

u u p u u
v u r

r x x r r r x

u u v
k

x x r r x

u v

r r x




 



       
+ = − + +  

       

            
− + +       

           
+  
     
+ +   

    

 (53a) 

2 2

2 2

1 2

3

1 1

0

f

f

T

T

u u
v u p k p

r x x

u u u u
r r

r r r r r rx x

u v v

x x x r




 



    
+ = − +  

    

           
+ + + +      

          

   
+ + + = 

   

 (53b) 

( )
2

2

1 1
T

f

u u p u u
v u r

r x x r r r x
 



       
+ = − + + +  

       
 (53c) 

r-momentum; 

( ) 2

2

1 1

2
2

3

1 2
2

3

f

T T

T

rvv v p v
v u

r x r r r r x

v v u
k

r r x x r

v
k

r r




 



      
+ = − + +  

        

            
− + +       

           
+  
    
+ −   

   

 (54a) 

( ) 2

2

1 2

3

1

2

1 1 2
2

3

f

f

T T T

T

v v
v u p k p

r x r

rv v

r r r x

v v u

r r x x x r

v
k

r r r






  



    
+ = − +  

    

   
+ +  

     

        
+ +  

       
+
 

  + −    

 

(54b) 

( ) 2

2

2 2

2 2

2

2

1 1

1

1 1 2

3

f

T T T

T T T

rvv v p v
v u

r x r r r r x

v v v

r rr x

v v u
k

r r r x rr




  

  

      
+ = − + +  

        

    
+ +  

   
+  

     + + + −       

 (54c) 

( ) 2

2

2 2

2 2

2

1 1

1

1 2

3

f

T T T

T T

rvv v p v
v u

r x r r r r x

v v v

r rr x

v v v u
k

r r r r x rr




  

 

      
+ = − + +  

        

    
+ +  

   
+  

       + + + + −         

 (54d) 

( ) 2

2

2 2

2 2

2

1 1

1

1 2
0

3

f

T T T

T T

rvv v p v
v u

r x r r r r x

v v v

r rr x

v v u v
k

r r r x rr




  

 

      
+ = − + +  

        

    
+ +  

   
+
 

    + + + = + −      

 (54e) 

( ) 2

2

2 2

2 2 2 2 2

1 1

1 1 2

3

f

T

rvv v p v
v u

r x r r r r x

v v v v v v
k

r r rr x r r r






      
+ = − + +  

        

     
+ + + − + + −   

    

 (54f) 

( )

( )

2

2

2

2 2

1 1

1 1 2
2

3

f

T T

rvv v p v
v u

r x r r r r x

rv v v
k

r r r rx r




 

      
+ = − + +  

        

     
+ + + −           

 (54g) 
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( )
( ) 2

2

1

1

1 1 2
2

3

f

T

T

v v p
v u

r x r

rv v

r r r x

v
k

r r r



 



  
+ = −

  

   
+ + +  

     

  
+ −  

  

 (54h) 

( )
( ) 2

2

1

1

1 1 2
2

3

f

T

T

v v p
v u

r x r

rv v

r r r x

u v
k

r x r r



 



  
+ = −

  

   
+ + +  

     

    
+ − − −  

   

 (54i) 

( )
( ) 2

2

1

1

1 1 2
2 2

3

f

T

T T

v v p
v u

r x r

rv v

r r r x

u v
k

r x r r



 

 

  
+ = −

  

   
+ + +  

     

    
+ − + −  

   

 (54j) 

( )
( ) 2

2

1

1

1 2 2 1 2

3 3 3

f

T

v v p
v u

r x r

rv v

r r r x

u u k v v k k
r r



 

  
+ = −

  

   
+ + +  

     

  
   + − − + − + −  

  

 (54k) 

( )
( )

( )

2

2

1

1

1 1
2 2

f

T

v v p
v u

r x r

rv v

r r r x

u u v v k k
r r



 

  
+ = −

  

   
+ + +  

     

 
   + + = − 

 

 (54l) 

( )
( ) 2

2

1

1

f

T

v v p
v u

r x r

rv v

r r r x



 

  
+ = −

  

   
+ + +  

     

 (54m) 

Above procedure is valid for the energy equation. 

Therefore, only final form is given below. 

2

2

1
T

p p p

T T T
v u

t r x

k T T
r

c r r r c cx




  

   
+ + 

   

       
= + + + +           

 (55) 

A way of calculating turbulent viscosity is using k-ϵ 

turbulence modeling approach. The relation 

between turbulent kinetic energy, dissipation and 

turbulent viscosity is given in (56). 

2

T

k
C


=  (56) 

0.09C =  (57) 

Derivation of equations for turbulent kinetic energy 

and its dissipation is explained in [4,6]. In order to 

obtain turbulent kinetic energy equation, 

momentum equations before decomposition are 

multiplied by velocity components in their 

respected direction. Obtained equations are 

decomposed and time averaged. Then those 

equations are put together to form a single 

equation. Similarly, decomposed and time averaged 

momentum equations are multiplied by time 

averaged velocity components in their direction. 

Those equations are also added together. This 

second summation forms kinetic energy equation of 

the mean flow. When second summation is 

subtracted from first summation, turbulent kinetic 

energy is obtained. Dissipation equation requires 

additional and different approaches. Obtained 

turbulent kinetic energy and dissipation equations 

are modeled by using turbulent viscosity approach. 

This is required because those equations have triple 

correlations of fluctuating terms. This complex 

process can lead practitioners to mistakes. Instead, 

vector form from [1] is used again in order to write 

k and ϵ equations in cylindrical coordinates. 

( )v T

T

k

k k


   


  
 =  +  + −   

  
 (58) 

( )
2

,1 ,2v T

TC C
k k

 



  
     



  
 =  +  + −   

  
 (59) 

Model constants are 1k = , 1.3 = , ,1 1.44C =
 and 

,2 1.92C =
. 
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The final forms of turbulent kinetic energy and 

dissipation equations in cylindrical coordinates are 

given in (60) and (61). 

Turbulent kinetic energy model equation; 

2

2

2 2 2 2

1

2

T

k

T

k k k k
u v r

x r r r rx

u v u v v

r x x r r





 

        
+ = +    

       

             
+ + + + + −         

              

 (60) 

Turbulent kinetic energy dissipation equation; 

2

2

2 2 2 2

,1

2

,2

1

2

T

T

u v r
x r r r rx

u v u v v
C

k r x x r r

C
k







   








        
+ = +    

       

             
+ + + + +         

              

−

 (61) 

Standard k-ϵ turbulence model necessitates wall 

functions since isotropic turbulence assumption is 

not valid near walls. Viscous sub-layer and 

logarithmic layers are solved by means of wall 

functions as source terms. Related standard wall 

functions are written below after the arrangement 

for cylindrical coordinates. 

x-momentum wall function that models wall stress 

( )

1/4 1/2

1/4 1/2
1

ln

w

w

f w

C k u
A r x

C k r r
E









 

− = − 
 −
  
 

 
(62) 

where 0.41 =  and 9.793E = . 

Wall function for k equation production and 

dissipation terms; 

( )

( )

( )

( )

1/4 1/2

3/4 3/2 ln

k

w

w

f w w

P V

C k r r
C k E

u r r x
r r r r









 

− 

  −
   
  

= −   − −
 
 
 

 (63) 

Wall function for ϵ value at the calculation node; 

( )

3/4 3/2

w

C k

r r





=

−
 (64) 

Generally numerical grid is arranged for flow 

solution. Accordingly, the node at which wall 

function of the energy equation is solved can lie in 

linear or logarithmic layers. Therefore, two types of 

wall functions are given below for the energy 

equation. These wall functions calculate the wall 

heat flux. 

For logarithmic layer; 

( )

( )

1/4 1/2

1/4 1/2
1

ln

ww w

p w

T

T T C kq A
r x

c C k r r
E P







 

−
= 

  −
+   

   

 
(65) 

P in (65) is a function described in [8],[9] and it is 

given below. 

3/4 Pr
0.007Pr

9.24 1 1 0.28 T

T

P e




 
−   

 

   
  = − + 
      

 (66) 

Wall function for the energy equation in linear 

region is given below. 

( )

( )

1/4 1/2

1/4 1/2

Pr

ww w

p w

T T C kq A
r x

c C k r r







−
= 

−
 

(67) 

 

2.4 Nondimensionalization 

 

The last step is making equations non-dimensional. 

Following parameters are proposed for this process. 

*

0

u
u

u
=  (68) 

*

0

v
v

u
=  (69) 

* 0

1 0

T T
T

T T

−
=

−
 (70) 

*

2 w

x
x

r
=  (71) 

*

2 w

r
r

r
=  (72) 

*

2
wf

w

d
d d

r
= =  (73) 

w

wf

f

k
k

k
=  (74) 
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w

wf

f





=  (75) 

*

2
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4
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*
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(77) 

*
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(78) 

*

3
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u

r
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(79) 

*
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T

T
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
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*

0 2

T

T
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
 =  (81) 
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*
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2
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2
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k T T

T T C k
q
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E P
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




= 
−

−
=

  −
   +

  
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(82) 

0 2
Re wu r


=  (83) 

Pr
p pc c

k k

 
= =  (84) 

0 0
2 2

Pe
w p w

r u c r u

k




= =  (85) 

( )

2

0

1 0

Ec
p

u

c T T
=

−
 (86) 

Dimensionless governing equations are given in the 

following by using above dimensionless parameters. 

Their order is; continuity equation, x momentum 

and r momentum equations, turbulent kinetic 

energy and turbulent kinetic energy dissipation 

equations, energy equation and wall functions. 

* * *

* * *
0

v v u

r r x

 
+ + =

 
 (87) 

2
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* 2 *
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1

2
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Re
T

u u p
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r x x

u u
r

r r r x


  
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  

     
+ + +   
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 (88) 
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1
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Re
T
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r x r
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
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 (89) 
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


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( )

3 23 4 *

*

3 2 *2 0.5

C k

r





=

−
 (96) 



 Derivation of Dimensionless Governing Equations for Axisymmetric Incompressible Turbulent Flow Heat…, Canlı et al. 

 

 

1108 
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−
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Finally, dimensionless wall coordinate is derived 

from y+ by using k-ϵ turbulence model. 

( ) ( )
1 21 4 * *1 4 1 2

*
Re 0.5

2

w
C k rC k r r

y




−−
= =  (99) 

In the next section, this formulation flow and its 

implications are evaluated. 

 

 

 

3. Implications 

 

The first point to be addressed in the governing 

equations written in cylindrical coordinates is 

additional terms containing 1/r. From geometrical 

and physics point of view, these terms emerge due 

to increasing surface area of a differential volume as 

radius increases. In order to conserve mass, for 

instance, velocity in radial direction should 

decrease; otherwise mass would be generated due 

to increasing arc area. This phenomenon is tried to 

be illustrated by Figure 3. Figure 3 is a pseudo-

schematic arrangement in which flow enters the 

domain having only axial velocity component and 

exits with only radial velocity component. This 

fictional domain has nothing to do with the 

derivational procedure of the previous section. It is 

drawn only for physical reasoning. 

 

 
Figure 3. Schematics for illustrating 1/r terms by 

continuity. 

 

For a 2D axisymmetric control volume as depicted in 

Figure 3, continuity can be written by a sequence of 

mathematical operations given in (100)-(107). Since 

mass is conserved, inlet and outlet mass flow rates 

are equal. Therefore, the relation between axial and 

radial velocities can be expressed as (102). Taking 

partial spatial derivatives of velocity components 

and summing them for conservation of mass flow 

rate should necessitate a deficit as V  since there 

should be additional term for continuity. After 

reorganization, the additional term is found as in 

(107). 

m VA=  (100) 

2 2

2 2

u r
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  
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 
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2

ur
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x L L L L r
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= = = − = − = −
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 (103) 
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0

0

v vv v v

r r r r r

− −
= = =

 − −
 (104) 

0
u v

V
x r

 
+ +  =

 
 (105) 

2
0

v v
V

r r
− + +  =  (106) 

v
V

r
 =  (107) 

Next issue is the appearance of Reynolds stresses 

(turbulent stresses) and turbulence modeling in 

momentum equations. Reynolds stresses have 

negative sign comparing with viscous diffusion of 

momentum while modeled turbulence terms have 

positive sign. In order to explain this phenomenon 

an illustrative example is presented. A probe 

immersed in developed steady turbulent pipe flow 

at the symmetry axis would measure an axial 

velocity as in Figure 4. Of course, this schematic 

illustration is for identifying components of the 

measured velocity and roles of turbulence and 

turbulence modeling on them. Axial velocity, 

fluctuating with time for steady regime has two 

 

flow direction 
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components; time averaged constant component 

and fluctuating component that has different values 

by time. Turbulent stresses or Reynolds stresses 

disturb layers of laminar flow, decreasing effects of 

molecular viscosity towards symmetry axis. 

However, these stresses have their energy cost and 

hence they have contribution to pressure drop of 

the flow. As local velocity increases, turbulence also 

increases and acts as a regulator. This is resulted 

with a relatively lower developed velocity at 

symmetry axis comparing with the laminar flow 

case. Modeled terms induce this effect with a 

different mechanism. They reduce flow energy with 

a pseudo viscosity (turbulence viscosity) that 

changes its value locally. In other words, Reynolds 

stresses decrease the effects of diffusion of laminar 

stresses while modeled turbulence decreases 

momentum flux and hence flow energy. 

 

 
Figure 4. Schematics for dimensionless axial velocity 

component at symmetry axis for a pipe flow. 

 
A similar projection can be made for pipe flow axial 

velocity profile in radial direction (Figure 5). While 

turbulent stresses make velocity profile less 

parabolic, turbulence modeling extract energy from 

uniform velocity profile to reach the same power-

law profile. 

 
 

 
Figure 5. Schematics for velocity profiles, Reynolds 

stresses and modelled turbulence terms. 

 
Next focus is on non-dimensionalization. For making 

governing equations non-dimensional, simple scales 

are preferred, aiming Reynolds number the only 

parameter for momentum equations. For 

hydrodynamic investigation, only length and 

velocity scales are used as pipe radius and inlet 

velocity respectively. This leads to Reynolds number 

and dimensionless turbulent viscosity in the 

momentum equations. Since turbulent viscosity is 

calculated, only independent parameter to be 

investigated is Reynolds number.  

Temperature in energy equation is not just 

dimensionless but also normalized. This is desired 

because it limits the investigation to an interval 

where all assumptions such as constant viscosity are 

valid, and no additional measures are taken.  

The scales for nondimensionalization lead to Pe and 

Ec/Re in energy equation. Ec/Re appears as a 

parameter for viscous dissipation and Ec is for 

turbulent dissipation. Normally, Ec number is used 

as a parameter for viscous heating and Mach 

number (Ma) is also stated as a limit to evaluation 

of viscous heating versus Ec number. The 

nondimensionalization process intrinsically yields 

Ec/Re but physically this combination induces 

effects of solid boundaries and viscosity. Therefore, 

it is planned to conduct a CFD analysis in future to 

see viscous heating for various values of Ec/Re. 

 

 

 

4. Conclusion and Remarks 

 

In this work, governing equations for CFD are 

written in cylindrical coordinates explicitly by using 

vector forms as starting point and vector operations 
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for extracting them into final forms. Important 

points in vector operations special to cylindrical 

coordinates are emphasized. Means of 

reorganization are explained. Equations are then 

simplified for 2D axisymmetric incompressible 

turbulent flow. Some parameters are proposed for 

making equations non-dimensional. Following 

remarks can be given: 

• Writing governing equations explicitly for a 

specific coordinate system seems to be applied best 

by using vector forms of the equations as a starting 

point. 

• Special care should be given to vector operators 

and operations since they change according to 

coordinate system.  

• Continuity equation in the chosen coordinate 

system is devised several times in order to 

reorganize equations. Some terms in the 

reorganized equations constitute continuity 

equation and hence they are equal to “0”. The terms 

that emerge during reorganization of Reynolds 

Decomposition equations in order to have double 

correlation of fluctuating velocity components are 

cancelled by this way. Some of the additional terms 

that emerge with the application of turbulent 

viscosity approach in order to replace fluctuating 

terms are also cancelled by this way.  

• Making governing equations non-dimensional 

needs careful decisions in order to have 

dimensionless numbers of interest in the governing 

equations. Also, it is recommended to use primitive 

constants such as inlet velocity.  

• Using normalized temperature instead of non-

dimensional temperature is necessary to stay in the 

interval of assumptions such as constant viscosity.  

• Although turbulence modeling and Reynolds 

stresses lead to the same velocity profiles, their 

mechanism are different, and they effect on 

different phenomena. 
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Nomenclature 

 

wA  Wall surface area (m2) 

  Thermal diffusivity coefficient (m2/s) 

T  Turbulent thermal diffusivity coefficient (m2/s) 
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wf  Wall to fluid thermal diffusivity coefficient ratio 

C  
Turbulence model coefficient 

,1C  Turbulence model coefficient 

,2C  Turbulence model coefficient 

pc  Specific heat (J/kgK) 

wfd  Wall to fluid thickness ratio 

e  Energy (J) 

ê x
 Unit vector in axial direction 

ê r
 Unit vector in radial direction 

ê  Unit vector in azimuthal direction 

  Turbulence kinetic energy dissipation (m2/s3) 

E  Wall function coefficient 

Ec Eckert number 

f  Force vector (N) 

  Viscous dissipation (W/m3) 

Fo Fourier number 

I  Identity tensor 

k  
Turbulence kinetic energy (m2/s2) / Thermal conduction 
coefficient (W/mK) 

wfk  Wal to fluid thermal conduction coefficient ratio 

  von Karman constant 

L  Length (m) 

  Bulk viscosity (kg/ms) 

  Dynamic viscosity (kg/ms) 

T  Turbulent dynamic viscosity (kg/ms) 

  Kinematic viscosity (m2/s) 

T  Turbulent kinematic viscosity (m2/s) 

p  Pressure (Pa) 

P  Pee function 

kP  Turbulence kinetic energy production (m2/s3) 

Pe Peclet number 
Pr Prandtl number 

sq  Surface heat generation (W) 

Vq  Volume heat generation (W) 

wq  Wall heat flux (W) 

r  Cylindrical coordinate radial direction 

wr  Radius (m) 

  Density (kg/m3) 

f  Fluid density (kg/m3) 

Re Reynolds number 

  Turbulence model coefficient 

k  Turbulence model coefficient 

T  Turbulent Prandtl number 

T  Temperature (K) 

wT  Wall temperature (K) 

0T  Initial temperature (K) 

1T  Boundary condition temperature (K) 

t  Time (s) 

( )
T

 Transpose 

τ  Shear stress (Pa) 

w  Wall shear stress (Pa) 

  Cylindrical coordinate azimuthal direction 

u  Axial velocity (m/s) 

0u  Inlet velocity (m/s) 

Lu  Laminar axial velocity (m/s) 

Tu  Turbulent axial velocity (m/s) 

v  Velocity vector (m/s) 

v  Radial velocity (m/s) 

V  Velocity (m/s) 

w  Azimuthal velocity (m/s) 

x  
Cartesian coordinate direction / Cylindrical coordinate axial 
direction 

y  Cartesian coordinate direction 

y +  Dimensionless wall coordinate 

*y  Dimensionless wall coordinate by turbulence model 

z  Cartesian coordinate direction 

 

 


